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Abstract

A simple gripper for a robotic arm capable of grasping various objects in manufacturing lines provides great benefits
in terms of standardization of grippers, reducing engineering time and costs. This will provide the possibility to reuse
the manufacturing line for several products of different geometry without significant changes. The goal is to make a
gripper such that it will be a commodity similar to the robot arms. The algorithm, termed 3D-OCOG (3-Dimensional
Objects COmmon Grasp search) and proposed in this paper, searches for a common grasp configuration over a set
of spatial objects. It maps all possible grasps for each object that satisfy force closure and quality criteria so the
grasps could counter-balance external wrenches (forces and torque) applied to the object. The mapped grasps are
parameterized as feature vectors in a high-dimensional space. This feature vector describes the design of the gripper.
A database of feature vectors is generated for all possible grasps for each object in the feature space. A similarity
join based on nearest-neighbor search and classification algorithm are used for intersecting all possible feature vectors
over all objects and finding common ones. Each feature vector found is a grasp configuration for the group of objects,
which directly implies the gripper design. Simulations of a 3-finger grasp of four meshed objects resulted in several
common grasp solutions. Therefore, a designated experimental setup was established composed of three robotic
fingers, to simulate the grasp of the test objects. Results of the simulations and experiments validate the feasibility of
the proposed algorithm.
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1. Introduction

Today, the mass production in assembly lines and
manufacturing plants often relies on robotics and au-
tomation [1, 2, 3, 4]. Robot arms equipped with grippers
are key components to carry out a myriad number of
critical automation tasks such as material handling and
assembly [5, 6]. Each robotic gripper is designed, built,
and optimized for carrying out a specific task while han-
dling a specific part. This makes them very inflexible in
terms of variations of objects and tasks. Current auto-
matic solutions to flexibility involve either adding active
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elements to the grippers in order to adjust to different
part geometries or simply adding a variety of grippers
adjacent to the robot that can be replaced via a robot-
interface plate [7, 8]. Exchanging grippers requires
more factory space and consumes time for connecting
and calibrations, and thus is costly. Other solutions use
highly dexterous grippers which are expensive and not
feasible for large objects. The design, manufacture, and
testing phase of a current typical gripper consumes a
considerable amount of engineering time and adds extra
cost to the final product.

The goal of this work is to develop an algorithm that
will find a configuration of a simple gripper for grasping
a given set of objects. The configuration of the gripper



is defined to be the relative position between the con-
tact points and the surface normals at each contact. A
flowchart presenting the high level functionality of the
algorithm is presented in Figure 1. Given a set of CAD
models of the objects, the goal is to design a gripper that
is universal, i.e., able to hold a wide set of components,
rather than a single instance of it, for multiple tasks. We
propose a novel solution for designing a simple gripper
able to do so. Specifically, our aim is to develop an al-
gorithm for computing the grasp configuration suitable
for a set of objects. As we discuss, in the design of an
industrial gripper, the final configuration has to be sim-
ple and low cost; thus, it has to be with minimal degrees
of freedom (besides simple degrees of freedom for ap-
plying contact forces such as clamping) and qualitative.

This paper presents an algorithm for finding a com-
mon grasp for a set of objects. It presents parameteri-
zation of the grasps, which are force-closure, for each
object and using it for classification of the objects with
respect to these grasps. In the first stage of the algo-
rithm aForce Closure Grasp Set(FCGS) is constructed
for every object by sampling all possible grasps (up to
mesh size), filtering out those with low grasp quality
measure, and representing the possible grasps as feature
vectors in the feature space. Each feature vector is con-
structed in a unique form to injectively define the grasp
invariant to any reference frame. The feature vector im-
plies the grippers’ design based on the common grasp.
The next step of the algorithm is nearest-neighbor based
the similarity join, for finding pairs of common feature
vectors in the FCGS of all objects. Finally, classifica-
tion is done in order to find minimal feature vectors that
cover the whole set of objects. In this work, the ability
and kinematics of the gripper are not considered. We
assume the ability of the fingers to reach every contact
point with no geometry limitations (by design).

This paper extends our previous work on 2D parts
[9, 10] for grasping 3D objects. In [11] we presented
a general overview of the algorithm for 2D and 3D ob-
jects. In this paper we present an extended algorithm
with test-runs, experiments and analysis. The main con-
tribution in this paper is in the adaptation of the grasping
model and algorithm to 3D objects, a novel algorithm
for parameterization of ann-finger frictional grasp and a
sufficient condition for a non-force-closure grasp which
is used for filtering out non-feasible grasps.

The paper is organized as follows. The next section is
a summary of related work. Section 3 gives an overview
of grasping fundamentals used in this work. The struc-
ture of the grasp feature vector and the FCGS generation
algorithm is described in section 4. Section 5 presents
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Figure 1: 3D-OCOG algorithm approach.

the main algorithm for similarity join and classification
of the common feature vectors. Section 6 provides com-
plexity analysis of the algorithm. Section 7 describes
the implementing the proposed algorithms. Section 8
presents the experiments done to validate the concept
and simulations. Finally, the last section contains a sum-
mary of the work and proposes future work.

2. Related Work

Synthesis and evaluation of robotic grasps have been
widely surveyed in literature. The notions of force clo-
sure and grasp quality measure are the fundamentals of
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a good grasp and there are various definitions for them.
Using a generalized vector termedwrench, combining
force and torque, and the wrench space derived from it,
in [12] force-closure grasp criterion used the notion of
convexity conditions for a defined grasp map. Mishra et
al. [13] presented several conditions for a force-closure
grasp for non-frictional grasps. Niparnan and Sudsang
[14] used the notion of the wrench space as a 3 or 6
dimensional (for planar or spatial cases, respectively)
convex-hull previously introduced by Ferrari and Canny
[15] to define geometrical conditions for defining force
closure grasp criteria. A force-closure grasp is defined
to be capable of resisting external forces and torques ap-
plied to the object by forces applied at the contact points
with the fingers.

Several algorithms for grasp synthesis have been pre-
sented [16]. Roa and Suarez [17] proposed a grasp op-
timization algorithm based on the convex hull criteria,
meaning maximizing the largest external wrench a grasp
can resist independent of the wrenches direction. Wang
[18] introduced a greedy algorithm for fixture synthe-
sis of frictionless grasps on a discrete point set, min-
imizing the workpiece positioning errors. Ponce and
Faverjon [19] proposed a computation method for the
three-finger grasps of 2D polygonal objects with fric-
tional point contact, by using linear sufficient conditions
for force closure. Liu [20] addressed the same problem;
however, a new sufficient condition for force-closure
was introduced, based on dimensionality reduction of
the convex-hull. The work done in GraspIt [21] has
similarities to this work in the analysis methods of force
closure and quality measure. In [22] a randomized grasp
generator was introduced. An algorithm has been shown
to generate grasp candidate with a method to increase
the ratio between force-closure and non-force closure
grasps. Such notion has similarities to our work.

Several grasp optimization methods using different
grasp quality measures have been presented. A sum-
mary of common grasp quality measures can be seen in
[23]. Ferrari [15] and Li and Sastry [24] introduced a
quality measure (used in this work) based on the exter-
nal wrench to be resisted, where the first introduced a
general measure based on the largest wrench magnitude
that the grasp can resist; the second used a task-oriented
quality measure defined by the specific wrenches ap-
plied to the object during execution of the task. Li
and Sastry also introduced a quality that measures how
far the grasp configuration is from reaching singularity.
Most quality measures mentioned are based on the posi-
tion of the fingers; other quality measures are based on
geometric criteria where the distribution of the fingers
on the objects is maximized [25, 26].

Some heuristic approaches for force closure and qual-
ity measure analysis were introduced. Niparnan et al.
[27] proposed force closure criteria of ann-finger grasp,
where a heuristic condition, based on vectorial theo-
rems, was used for initial filtering of grasps, thus re-
ducing running time. Prado and Suarez [28] introduced
a heuristic approach for generating and measuring a 3-
finger grasp, based on geometrical conditions consid-
ering the relative orientation and position of the three
contact faces.

To the best of our knowledge, no similar work has
been done searching for common grasps for the design
of grippers for a set of objects. Balan and Bone [29] pre-
sented an automated gripper design for a set of objects,
however, with limitation for a 3-finger jaw gripper. The
work in [30] has similarities to ours. A finger design
that can hold an object invariant of its scale or pose is
searched. However, in our work we focus on grasping
objects of various geometries but of the same scale. De-
try et al. [31] provides analysis of strategies for grasping
objects with correspond ace to the designated task. Fur-
ther, by learning of these strategies, the known grasps
are transferred to grasp new objects. Much work has
been done in the area of 3D shape similarity compari-
son algorithms, such as the work described in [32], [33]
and [34], presenting algorithms that are used for Internet
and local database search, face recognition, image pro-
cessing, or parts identification. The work of Ohbuchi et
al. [35] on shape similarity search uses a generalized
feature vector of a 3D polygonal mesh constructed from
the moment of inertia, average distance of the surface
from the model’s axis, and its variance. However, such
methods deal with mean parameterization of the geom-
etry (such as volume, shape distribution, moment of in-
ertia) of the objects and cannot be applied for grasping.
The work in [36] is based on shape matching for find-
ing the best grasp of a set of objects. The best grasp is
found by matching hand poses from a database of ob-
jects and human grasp postures. This is done by using
a predefined parameterization of the object surface and
the hand poses. This shape matching method inspired
this work.

Grasping is widely researched in a range of fields:
synthesis, grasp quality measure and grippers design.
Grasp synthesis usually deals with how to grasp a given
object with a given gripper based on some quality mea-
sure. Gripper design deals with defining the configu-
ration and kinematics of a gripper, usually a dexterous
gripper with multiple degrees of freedom. However,
there is no work on combining these notions for design-
ing a minimal and simple gripper to qualitatively grasp
multiple given objects, i.e., find a common grasp con-
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figuration.

3. Fundamentals

In this section we elaborate grasping fundamentals
that we use in our work. We present the grasp model we
use and discuss the notions of force-closure and quality
measure.

3.1. Grasping Model

Forces and torques can be represented as wrench vec-
tors in the wrench space. A wrench is a 6-dimensional
vector (in the case of 3D objects) and is denoted as
w = (f τ)

T
∈ R6 wheref ∈ R3 is the force vec-

tor andτ ∈ R3 is the torque vector. Furthermore, a
wrench applied at the contact point,pi , can be described
aswi = (f p i × f i)

T
, wherepi is represented in the

object coordinate frame (Figure 2). Friction exists at
the contacts between the fingertips of the gripper and
the object’s surface. Friction can be represented by the
simple Coulomb friction model. In this model, forces
exerted at the contact point must lie within a cone cen-
tered about the surface normal. This is known as the
Friction Cone(FC)

FC =








fi,1

fi,2

fi,3




:
∣∣∣∣∣

√
fi,2

2 + fi,3
2
∣∣∣∣∣ ≤ μfi,1, ∀fi,1 > 0




,

(1)
wherefi,1 is the normal component,fi,2 and fi,3 are the
tangential components at the contact point, andμ is
the coefficient of friction. The FC is non-linear and
therefore can be approximated with ans-sided convex
polytope and every force exerted within the FC can be
represented by a linear combination of the unit vectors
f̂ ik ∈ FC (primitive forces) constructing the linearized
friction cone (LFC),

LFC =




fi : fi =

s∑

k=1

aik f̂ ik , aik ≥ 0





(2)

whereLFC ⊂ FC andaik are nonnegative coefficients
[20]. The .̂ sign denotes a unit vector. The associated
wrenches can be expressed by the primitive forces as

wi =

s∑

k=1

aikŵik =

s∑

k=1

aik

(
f̂ ik

pi × f̂ ik

)

(3)

whereŵik are the primitive wrenches associated with
the primitive forces.
An n-finger grasp can be represented by the location of

all contact pointsP = {p1, ..., pn}. Equivalently, we
can represent the grasp using the matching wrenches
applied at the contact points represented in the object
coordinate frameW̃ = {w1, ...,wn}. If we consider the
friction cones, the wrench set can be expressed by the
primitive wrenches

W = {w11,w12, ...w1s, ...,wn1,wn2, ...,wns} (4)

Based on the model of the grasp, we now want to
define the feasibility of the grasp. Therefore, in the next
subsection we present the notion of force closure, which
defines whether the grasp is feasible or not.

Figure 2: An object and a friction cone at the contact point.

3.2. Force Closure

A grasp is said to be force-closure if it is possible
to apply wrenches at the contacts such that any ex-
ternal forces and torques acting on the object can be
counter-balanced by the contact forces. A system of
wrenches can achieve force-closure when they posi-
tively span the entire wrench space. Hence, any external
load can be balanced by a non-negative combination of
the wrenches [19].

Definition 1. The Convex Hull (CH) of systemS of vec-
torss1, ..., sn is the set of all non-negative convex combi-
nations of the subsets of vectors fromS. In other words,
the CH is the minimal convex set containingS and is
defined as

CH(S) =





n∑

i=1

aisi : si ∈ S,
n∑

i=1

ai = 1 and ai ≥ 0





(5)

where ai is the convex combination coefficient bounded
to be positive, to ensure positive grip (non-sticky fin-
gers).

The CH is a mathematical tool to analyze the grasp and
to determine whether it is force-closure.
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Definition 2. The convex hull of the system of contact
wrenches is denoted as the Grasp Wrench Set (GWS).

After the GWS is defined, we use it to check if the
CH spans the entire wrench space, meaning whether the
grasp is force-closure.

Theorem 1. [12, 19, 13] A necessary and sufficient
condition for a system of n× s wrenches

W = {w11,w12, ...w1s, ...,wn1,wn2, ...,wns}

to be force-closure is that the origin ofRk lies in
the interior of the convex hull of the contact primitive
wrenches. Meaning,

O ∈ interior(CH(W)) (6)

To practically check if a CH satisfies condition 6, we
use theorem 2 for the implementation of it in our algo-
rithm.

Theorem 2. [37] Let G be a grasp with an associated
set of wrenchesW, and Hk be a hyper-plane on the
boundary of CH(W). The origin O of the wrench space
satisfies O∈ interior(CH(W)) if and only if ∀k any
vectorr ∈ interior(CH(W)) and O lie in the same open
half-space defined by Hk.

By selectingr as a positive linear combination of the
grasp wrenches, we can guarantee that it will constantly
be in the interior ofCH(W). Thus, theorem 2 is used
in this work for force closure verification by checking if
the interior pointr and the originO are on the same side
of each of the convex hulls facets.

3.3. Grasp quality measure

As mentioned above, a grasp that is Fo-C can resist
external loads; we now need to quantify the quality of
the grasp. That is, how much external load it can re-
sist or, in other words, how many resources (in terms of
contact force) it needs to apply in order to resist the ex-
ternal load. The quality measure quantifies how much a
grasp can resist an external wrench without the fingers
losing contact or starting to slip [38]. A higher qual-
ity measure reduces object deformations due to contact
force and actuator resources. The quality measure will
be used as a grasp criterion for the algorithm presented
later in this paper and will provide a selection tool for
grasps.

There are several known quality measures [23], most
of them based on thetask wrench set(TWS). The TWS
is a wrench set of all external wrenches that needs to be
applied to the object during execution of a prescribed

task. In general, the quality measure is the relation be-
tween wrenches that need to be applied (denoted by the
TWS) and wrenches that can be applied (denoted by the
GWS). The most common quality measure is the largest
ball criterion that will be used in this work. This mea-
sure is based on a general TWS and is used when there
is no prior knowledge of the task forces. In this method,
the grasp quality is equivalent to the radius of the largest
ball centered at the origin of the GWS and fully con-
tained in theCH(W) [17]. In other words, the grasp
quality measure is defined as the distance from the ori-
gin of the GWS to the closest facet of theCH(W). For-
mally, we can say that the quality measureQ is defined
as

Q = min
w∈∂CH(W)

‖w‖ (7)

where∂CH(W) is the boundary ofCH(W) [15]. The
quality measure in this method denotes the weakest net
wrench that can be applied to counter-balance the ex-
ternal wrenches in its direction. Figure 3 illustrates the
GWS and the largest ball contained in it of a 2D grasp
(the GWS of a 3D grasp cannot be illustrated as it is 6-
dimensional). The quality measureQ is the radius of the
ball. This means that large contact forces would have to
be applied when an external wrench is applied along the
weakest direction, defined by the vector from the ori-
gin to the point where theQ sized ball is tangent to the
boundary ofCH(W).

Figure 3: The grasp wrench set (GWS) and the largest ball (TWS).
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3.4. Sufficient condition for a non-force-closure grasp

Due to the high complexity of the generation of
a convex hull and computing the largest ball criteria,
a condition is added in order to filter out non-force-
closure grasps prior to the ”expensive” computation of
the convex-hull. This can prevent excessive convex-hull
computation and reduce the required CPU time. The
following lemma is a necessary condition for a set of
vectors to positively span the entire space.

Lemma 1. [27] A necessary condition for a set of vec-
tors to positively spanRk is that the projection of the
vectors on any subspaceRt<k must positively span the
subspace.

According to Lemma 1, a necessary condition for a set
of vectors to span the wrench spaceR6 is for them to
span the force spaceR3 as well. The following lem-
mas are necessary conditions for 3-contact-point andn
contact-point grasps to positively span the force space
R3. Lemma 2 is a necessary condition for the friction
cones of a 3-contact points grasp to positively span the
force space.

Lemma 2. [28] A necessary and sufficient condition for
a set of a 3-frictional contacts grasp to positively span
the force spaceR3 is for the 3 normals (unit vectors) at
the contact pointŝni , n̂j , n̂k , to satisfy the condition

θ = cos−1(n̂h � n̂l) −
π

2
< tan−1 μ, h = i, j, k (8)

wheren̂l is the normal to hyper-plane Hl parallel to the
plane formed by vectorŝni , n̂j , n̂k (Figure 4).

Proof. Sufficient condition:Denote the angle between
n̂h for h = i, j, k and planeHl asθ (the angles between
the normals and the base of the formed tetrahedron are
equal in a tetrahedron with three equal edges from the
same vertex) and the friction angleα = tan−1 μ. Hl is
a supporting plane separatingR3 to two half spaces. If
θ ≥ α, then the three associated friction cones remain in
the same half space and cannot positively span the other
half space. Ifθ < α, then the friction cones of the three
normals partly cross to the other half space and there-
fore may span the entire force spaceR3. This is equiv-
alent to condition (8), as the left side of the inequality
equalsθ and the right side of the equation is the friction
angle computation according to the coefficient of fric-
tion and is equal toα.

Necessary condition:Let θ ≥ α and therefore, the
three friction cones of the three normals remain at the
same half space formed by planeHl . We will show that
in such a case any pointv at the opposite side of the

planeHl cannot be represented by a positive combina-
tion of the vectors in the friction cones of the normals
n̂i , n̂j , n̂k . The three normalŝni , n̂j , n̂k and their friction
conesFC(n̂i), FC(n̂j ), FC(n̂k) span a cone that also lies
at the same half space. That is, the convex-hull of the
three friction cones, which is shown in Figure 5, does
not contain the origin in its interior and therefore does
not positively span the force spaceR3. In other words,
we can say that

v < CH
(
FC(n̂i), FC(n̂j ), FC(n̂k)

)
(9)

and therefore cannot represent all vectors in the space
with a positive combination of the friction cone. Thus,
they cannot positively span the space.

If condition 8 is satisfied and the friction cones pass
to the other half space, then the force space is spanned.
If not, the force space cannot bespanned.

The described Lemma is valid only for 3-finger grasp
(n = 3). The following Lemma is for the case ofn =

4 and is a sufficient and necessary condition for four
normals to positively span the force space.

Lemma 3. [39] A sufficient and necessary condition
for a quartet of normals at the contact pointsn̂1, ..., n̂4,
to positively span the force spaceR3 (without friction
cones), is for the negative of any of these normals to lie
strictly inside a cone formed by the other three normals.

For a grasp with friction (μ > 0), we can expand the
condition and say that the negative of any of the nor-
mals must lie on or inside the cone formed by the other
three normals in order to determine the 4 normals to
span the force space. The next lemma is an auxiliary
condition for constructing the final sufficient condition
for n normals not to span the force space.

Lemma 4. If there exist n normalŝn1, ..., n̂n ∈ R3 that
lie at one side of a plane and there does not exist a
triplet from the n normals that satisfies Lemma 2, then
the friction cones of the normals do not positively span
the force spaceR3.

Proof. If n normals lie at one side of a planeHb in R3,
then there exists a cone where its apex is on the origin
and contains all of the normals. In particular, there ex-
ists a minimal cone that contains at least three normals
on its surface and all other normals are within the cone.
This situation is illustrated in Figure 6, where the mini-
mal cone containing all the normals is shown. Checking
Lemma 2 for the three normals constructing the minimal
cone is enough to determine if the friction cones of the
normals positively span the force spaceR3, i.e., if some
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Figure 4: The three normals not positively spanning the entire space. Figure 5: The convex-hull of the three normals not positively
spanning the space.

of the friction cones partly cross to the other half space.
It should be mentioned, if there exists a plane where all
normals lie at one side, we can choose the one formed
(according to Lemma 2) by the three normals construct-
ing the cone. If such a triplet satisfying Lemma 2 does
not exist, the set of normals does not positively span the
force spaceR3.

Figure 6: The minimal cone containing all of the normals.

We now use the previous three lemmas to form the
following theorem, concluding a sufficient condition for
a set ofn normalsnot to positively span the force space
and by that not to be a force closure grasp.

Theorem 3. A sufficient condition for a set of n-
frictional contacts graspnot to be force-closure is for
the n normals at the contact pointsn̂1, ..., n̂n is for the
following two conditions to be satisfied:

(a) There doesnot exist a triplet of normalŝni , n̂j , n̂k

(i, j, k = 1,2, ..., n and i, j , k) satisfying Lemma
2; and

(b) There doesnot exist a quartet combination of nor-
malsn̂i , n̂j , n̂k , n̂h (i, j, k,h = 1,2, ..., n and i, j ,
k , h) satisfying Lemma 3.

Proof. According to Lemma 1, normals that positively
span the wrench spaceR6 must span the subspace (force
space)R3 as well. Since Lemma 3 is a necessary condi-
tion, we could claim its opposite, meaning; if its condi-
tion is not met the grasp is non-force-closure. Then, if
it is non-force-closure, the normals do not span the en-
tire force space. Since they do not span the force space
there exists a plane where all of the normals lie at one
side of the plane. If one vector would have passed to the
other side, the whole space would have been spanned.
Therefore, for the most, they span a half space and such
a plane exists. Hence, if condition (b) of Theorem 3
is satisfied, there exists a plane where all normals lie
at one side of the plane. Therefore, the normals (with-
out the friction cones) do not positively spanR3. And
according to Lemma 4, if such a plane exists and condi-
tion (a) is satisfied, the friction cones of the normals do
not positively spanR3. Meaning, all of the normals and
their friction cones lie at one half space and, therefore,
the grasp is definitely not force-closure. Hence, the pre-
sented theorem is a sufficient condition for a grasp to be
non-force-closure.

The following lemma and proposition are used to im-
plement condition (b) of Theorem 3 and are based on
the ones proposed in [39].

Lemma 5. Assume n normalŝn1, ..., n̂n which posi-
tively spanR3. For any rotational map R, the vectors
Rn̂1, ...,Rn̂n also positively spanR3.

Proof. Rotational mapping does not change the angles
between the normals sincen̂i ∙ n̂j = Rn̂i ∙ Rn̂j and there-
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fore if the normals satisfy Theorem 3, the rotated nor-
mals will also satisfy thetheorem.

Proposition 1. [39] Given four normalsn̂i , n̂j , n̂k , n̂h

and a rotational map Rc (for c = i, j, k,h), which is set
to map normal̂nc = (xc yc zc)T (||n̂c|| = 1) to align with
the z-axis, i.e., Rcn̂c = (0 0 1)T. A necessary condition
for the set of the normals to spanR3 is that there exists
one normaln̂i of the four that satisfy

Ri n̂s = (x y z)T s.t. z< 0 f or s= j, k,h . (10)

and the projection of the three normalŝnj , n̂k , n̂h on
the x− y plane of Ri coordinate frame (where Ri n̂i =

(0 0 1)T) positively span the plane.

Proof. Assume the three normalŝnj , n̂k , n̂h lie at one
side of the half space ofR3. Following from Lemma
5, rotation of the 4 normals by the same map is allowed.
Therefore, rotational mapRi is defined to map the fourth
normaln̂i to align with thez-axis. If thez components
of the vectorsRi n̂j ,Ri n̂k ,Ri n̂h are negative, we can say
that there exists a plane that separatesn̂i andn̂j , n̂k , n̂h

to two half spaces ofR3. Moreover, if the projection of
the three normalŝnj , n̂k , n̂h on thex−y plane ofRi coor-
dinate frame positively spanR2, it means that the nega-
tive of n̂i is inside the cone formed by the three normals.
The analysis for positive spanning ofR2 is done accord-
ing to the condition presented in [9]. This follows from
Lemma 3 defining the four normals to positively span
R3.

The presented sufficient condition for non-force-
closure is a strong tool to filter-out candidate grasps that
satisfy the condition and are definitely not force closure.
The ones not satisfying the condition are to be further
checked using the convex-hull method. Therefore, it is
used to filter out candidate grasps and reduce runtime.
The efficiency of this condition will be further investi-
gated in the simulations section.

4. FCGS Generation Algorithm

In this section we parameterize the set of all feasi-
ble grasps into a feature space. We generate the set of
all possiblen-finger grasps for each object. We define
a novel parametric representation of the grasp, invari-
ant of any coordinate frame. The grasps that are force
closure are to be represented as feature vectors in the
Force Closure Grasp Set(FCGS). This section presents
the proposed structure of the grasp feature vector and
the method for constructing the FCGS.

4.1. Grasp feature vector

An n-finger grasp of an objectB can be defined by a
set ofn contact points,

P =
{
pi : pi ∈ R

3 f or i = 1, ..., n
}

(11)

on the objects surface, and the normal to the objects sur-
face at each point

N =
{
n̂i : n̂i ∈ R

3 f or i = 1, ..., n
}
. (12)

We need to define a mapT, mapping graspj into a d-
dimensional feature vector, injectively representing the
grasp,

T : {P j ,N j} → ej ∈ R
d, (13)

whereej is ad-sized feature vectorej = (u1...ud)T . This
will enable the algorithm to map all possible grasps as
feature vectors in the FCGS and intersect them later
on. There is no analytical representation for mapT and
therefore we utilize a parameterization algorithm gen-
erating a feature vector from the representation in (11)-
(12).

A triangulation of a setP is a partition of it into sim-
plices, where the vertices are points ofP, such that the
union of them equalsP. Given a set of contact points
p1, ...pn, a triangulation of the point set can be made in
order to form a polytope whose contact points are its
vertices (see Figure 7a). The triangulation of the point
set inR3 can be done withtriangulation algorithms
such as Quickhull [40], space sweep technique [41], or
the algorithm proposed in [42]. A triangulation algo-
rithm will output a triangles tableK containing triplets
of vertices forming the triangles of the polytope (Figure
7b).

We divide the proposed feature vector into two parts;
first, is the constraints that define the polytope shape,
and second is the constraints that define the contact
point normals relative to the polytope geometry.

Proposition 2. For an n-vertex polytope, there are3n−
6 degrees of freedom, which determine the polytope’s
shape.

Proof. For ann-vertex polytope, each of then vertices
can be varied with three degrees of freedom (DOF), with
a total of 3n DOF. However, of the total of 3n DOF,
three correspond to translation and three to rotation of
the polytope; so there are 3n− 6 degrees of freedom for
the polytope’sshape.

There are many possible representations for the poly-
tope, some of them depending on the order in which we
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Figure 7: Example of (a) a polytope formed by the contact points, (b) its triangles table, and (c) the triangles adjacency table of the polytope.

parameterize its triangles. Therefore, we describe trans-
formation mapT as an algorithm which will uniformly
parameterize the grasps polytope. We build the feature
vector according to algorithm 1, which is based on pa-
rameterization of the triangles by a specific order, ensur-
ing that the feature vector be injective to the polygon.
The algorithm first parameterizes the triangle with the
largest area and moves on to the one adjacent to it with
the edge defined byγ1. As mentioned in proposition 2,
three constraints are needed to parameterize a triangle
with total of 3n − 6 constraints for the entire polytope;
therefore we need to constrain3n−6

3 = n− 2 triangles of
the polytope to fully parameterize it. The parameteriza-
tion moves on a chain ofn − 2 adjacent triangles, each
with 3 parameters. Moreover, the algorithm describes
the normals at the contact points relative to the poly-
tope. Each normal needs 2 constraints in order to de-
scribe it; therefore we need 2n more parameters. Thus,
the dimensionality of the feature vector is

d = 3n− 6+ 2n = 5n− 6 (14)

The algorithm for constructing ad = 5n − 6 dimen-
sional feature vector for ann-finger grasp and its opera-
tion is as follows. The algorithm starts with constructing
(step 1) a triangles table (like the one in Figure 7b), and
define trianglet1 as the one with the largest area (steps
2-5), wheret1 is denoted as the base of the polytope. It
should be mentioned, that if two or more triangles have
the same area within the floating point error, the poly-
tope will be parameterized twice or more. In step 6, an
adjacency tableY is formed (example in Figure 7c), de-
noting for each triangle its adjacency triangles accord-
ing to common vertices in the triangles tableK.

The generation algorithm outputs a sorted list of ad-
jacent triangles for each triangle. Such a table is used to

identify the next adjacent triangle to parameterize. Af-
terwards, we store the indices of trianglet1 wherev1

andv2 form the longest edge of the base triangle,v3 is
the third vertex of the triangle. The first parameter to
be computed is lengthd1 of v1v2 (step 9) wherepK (ti ,vj )

is the location vector of vertexvj of triangle ti which
are stored in tableK. The for-loop (step 10 to 28) com-
putes the shape parameters of the polytope, where for
the first triangle (the base), we calculate 2 anglesγ1

1, γ
2
1

and the edge between themd1. In the othern− 1 trian-
gles, for triangleti we calculate the two anglesγ1

i , γ
2
i of

the triangle that bounds the edge common to trianglesti
and ti−1. Moreover, we calculate the angleϑi between
the two trianglesti andti−1 (step 15). Within each loop
iteration, the next triangleti+1 is chosen so that it will
be adjacent toti but not adjacent toti−1 (according to
adjacency tableY). If two of those exist, the one that
is adjacent toti with the longest edge will be chosen.
This condition is made to ensure a single unique param-
eterization for all polytopes. Afterti+1 is chosen, we
updatev1, v2, v3 to store triangleti+1’s vertices. In the
last for-loop (steps 29-32), each normal is parameter-
ized to two anglesφ1

i , φ
2
i , which are the angles of the

normal with trianglest1 andt2, respectively. These two
triangles were chosen arbitrarily to ensure standard rep-
resentation of the feature vectors.

Example 1. A 4-finger grasp can be described by a
tetrahedron (4 facet polytope - see Figure 8). Accord-
ing to Proposition 2, six constraints are needed to de-
scribe the tetrahedrons shape and 8 parameters to de-
scribe the normals directions relative to the tetrahedron,
resulting in a 14-dimensional feature vector. Consider
the algorithm to calculate face 1 formed byΔp1p2p3 as
the base triangle with the largest area. The parameters
representing the shape of the tetrahedron, according to
the algorithm, are given as follows. The length of the
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Algorithm 1 Feature vectorgeneration.
Input: Grasp point setP j ,normals at each pointN j .
Output: Feature vectorej .

1: Generate triangles tableK of p1, ..., pn with thetriangulation algorithm .
2: for i = 1→ 2n− 4 do
3: A(i) = Area(K(i)) //computes area of trianglei.
4: end for
5: t1 = arg max

i
(Ai) //index of the largest area triangle denoted as the ’base’ of the polytope.

6: Generate adjacency tableY.
7: [v1, v2] = vertices indices of the largest edge of trianglet1.
8: v3 = index of the third vertex of trianglet1.
9: d1 = ‖pK (t1,v1) − pK (t1,v2)‖ //length of longest edge oft1.

10: for i = 1→ (n− 2) do
11: γ1

i = cos−1 (pK (ti ,v2)−pK (ti ,v1))�(pK (ti ,v3)−pK (ti ,v1))
‖pK (ti ,v2)−pK (ti ,v1)‖‖pK (ti ,v3)−pK (ti ,v1)‖

12: γ2
i = cos−1 (pK (ti ,v1)−pK (ti ,v2))�(pK (ti ,v3)−pK (ti ,v2))

‖pK (ti ,v1)−pK (ti ,v2)‖‖pK (ti ,v3)−pK (ti ,v2)‖

13: nf
ti
=

(pK (ti ,v2)−pK (ti ,v1))×(pK (ti ,v3)−pK (ti ,v1))
‖pK (ti ,v2)−pK (ti ,v1)‖‖pK (ti ,v3)−pK (ti ,v1)‖

//nf
ti

is the normal to the surface of triangleti .

14: if i , 1 then
15: ϑi = cos−1(nf

ti
� nf

ti−1
) //nf

ti
is the normal to the surface of triangleti .

16: ti+1 = triangle adjacent toK(ti) but not adjacent toK(ti−1) according toY.
17: if ti+1 adjacent toti with edgev1, v3 then
18: v2 = v3

19: else
20: v1 = v3

21: end if
22: v3 =index of the third vertex of triangleti+1.
23: else
24: v2 = v3

25: t2 = triangle adjacent tot1 onedgev1v2.
26: v3 = index of the third vertex of trianglet2.
27: end if
28: end for
29: for i = 1→ n do
30: φ1

i = cos−1(n̂i � nf
1) //angle of normal̂ni with trianglet1.

31: φ2
i = cos−1(n̂i � nf

2) //angle of normal̂ni with trianglet2.
32: end for
33: ej = (γ1

1 γ
2
1 d1 γ

1
2 γ

2
2 ϑ2 ... γ

1
l γ

2
l ϑl ...φ

1
1 φ

2
1 ... φ

1
n φ

2
n)T
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longest edge p1p2 of the base triangle t1 = Δp1p2p3

(the largest area triangle)

d1 = ‖p1 − p2‖ (15)

and the two angles adjacent to the edge

γ1
1 = cos−1

(
(p3 − p1) � (p2 − p1)
‖p3 − p1‖‖p2 − p1‖

)

(16)

γ2
1 = cos−1

(
(p1 − p2) � (p3 − p2)
‖p1 − p2‖‖p3 − p2‖

)

. (17)

The next two angles are the angles of the adjacent trian-
gle t2 = Δp2p3p4, which is adjacent to the shared edge
p2p3

γ1
2 = cos−1

(
(p4 − p2) � (p3 − p2)
‖p4 − p2‖‖p3 − p2‖

)

(18)

γ2
2 = cos−1

(
(p4 − p3) � (p2 − p3)
‖p4 − p3‖‖p2 − p3‖

)

(19)

and the angle between the two triangles

ϑ2 = cos−1(nf
2 � n

f
1) . (20)

As we have n= 4 contact points, we only need n−2 = 2
triangles to parameterize, t1 and t2.

Figure 8: Tetrahedron representing a 4 finger grasp to be parameter-
ized using 14-dimensional feature vector.

The normals direction representation is given by

φ1
i = cos−1(n̂i � nf

2), i = 1,2,3,4 , (21)

φ2
i = cos−1(n̂i � nf

1), i = 1,2,3,4 (22)

and therefore, the feature vector will be

e= (γ1
1 γ

2
1 d1 γ

1
2 γ

2
2 ϑ2 φ

1
1 φ

2
1 φ

1
2 φ

2
2 φ

1
3 φ

2
3 φ

1
4 φ

2
4)T .
(23)

Example 2. A 3-finger grasp of object B is described
by a single triangle with 3 vertices. The configuration
of the grasp is illustrated in Figure 9. The position of
the 3 fingers relative to each other can be injectively
represented as a triangle by two anglesγ1, γ2 and the
edge length between them d1, given by equations (15)-
(17). However, for three contact points, the polytope
degenerates into a triangle and therefore this case is not
fully covered by algorithm 1. Therefore, we describe the
normals at the contact points by two angles. Angleφi is
the angle between the normaln̂i and the normal to the
triangle surfacenf given by

φi = cos−1(n̂i � nf ), i = 1,2,3 (24)

and angleϑi is the angle of the normal’s projection on
the triangle surface with the adjacent triangle’s edge,
given by Equation (25)

ϑi =





π
2 − sgn(((n̂3 × nf ) × â3,1) � nf )

cos−1((n̂3 × nf ) � â3,1), i = 3

π
2 − sgn(((n̂i × nf ) × âi,i+1) � nf )

cos−1((n̂i × nf ) � âi,i+1), i = 1,2
(25)

whereâi,j =
pj−pi

‖pj−pi‖
. The feature vector for the 3-finger

grasp will be a 9-dimensional vector:

e= (γ1 γ2 d1 φ1 φ2 φ3 ϑ1 ϑ2 ϑ3)T . (26)

4.2. Grasp feasibility criteria

Since we would like to identify all feasible grasps of
an object, Algorithm 2 is presented. This algorithm re-
ceives the query grasp and first checks if it satisfies the
necessary condition of Theorem 2. This condition fil-
ters out non-force-closure grasps with low computation
cost. If the condition is met, it then computes the convex
hull of the primitive wrenches and checks if the force-
closure condition (6) is met, using Theorem 2. This
condition identifies whether the grasp is force closure.
Moreover, to be on the safe side, we check if the qual-
ity of the grasp is above a predefined value,Qd. For
now, the value forQd is chosen manually according to
the estimated number of force-closure grasps to be out-
putted; however, in practice the minimal quality value
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Figure 9: Three contact point grasp.

should be set according to the task to be done. The al-
gorithm returns true if all of these conditions are true
and therefore the grasp is feasible. Algorithm 2 defines

Algorithm 2 Grasp feasibility.
Input: An n-finger graspj of objectB, {P j ,N j}.
Output: True/False - graspj force-closure/non-force-

closure.
1: if condition (8) is truethen
2: Map {P j ,N j} to a system ofn ∙ swrenchesW j =

(w11,w12, ...w1s, ...,wn1,wn2, ...,wns).
3: ComputeCH(W j).
4: if O ∈ interior(CH(W j)) then
5: Compute the quality measureQ.
6: if Q ≥ Qd then
7: return True.
8: end if
9: end if

10: end if
11: return False.

whether a grasp is feasible, and we can now sample all
(up to mesh size) feasible grasps and parameterize them
to feature vectors. These feature vectors construct the
FCGS which is presented next.

4.3. FCGS generation

We generate the FCGS by exhaustive search of all
possible grasps of objectB. Algorithm 3 receives a
3D mesh of the original CAD object, consisting a set
of points P̃ ∈ R3 and a set of normals at each point
Ñ ∈ R3. The size of the mesh is defined according
to the grasp tolerances allowed by the manufacturing
demands, as will be discussed later on. For a given
number of contacts, the algorithm goes over all possible
n-finger graspsP j , and selects only the feasible ones.

This is achieved by using Algorithm 2, filtering out all
grasps that are not force-closure, and bounding the qual-
ity measure of the grasps to be above a predefined value
Qd. The ones selected are transformed into feature vec-
tor ej and added to the grasp setE ⊂ Rd, which is the
output of the algorithm. Algorithm 3 is inspired by the
one proposed by [43].

Algorithm 3 FCGSgeneration.

Input: Mesh of objectB to be grasped,{P̃, Ñ}.
Output: FCGSE = (e1, ..., ev) of objectB.

1: Generate graspj defined byP j = (p1, ..., pn) ∈ P̃.
//by sequential scan over the mesh points.

2: if P j is feasible (according to algorithm 2)then
3: Map grasp j to feature vectorej = (u1 ... ud)T

//according to Algorithm 1.
4: Labelej as force-closure and add to setE.
5: Store a pointer fromej toP j .
6: end if
7: if E = (e1, ..., ev) is not fully labeledthen
8: go to1
9: else

10: return grasp setE.
11: end if

For theq query objectsB1, ..., Bq, we apply Algorithm
3 and generate the FCGSE1, ...,Eq of all the objects.
In the next section we present the proposed method for
nearest-neighbor search and classification in order to
find common vectors between the sets, i.e., to find com-
mon grasps.

5. Similarity Search Algorithm

Given q sets of vectors of the FCGS (E1, ...,Eq) ⊂
Rd×q, one for each object, a similarity algorithm pro-
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posed in this section will find common vectors of the
sets where the distance between them is smaller than a
predefined tolerance. This will be done using Nearest-
Neighbor search and classification.

5.1. Nearest Neighbor Search
The database structure used in this work is the well-

known kd-tree. Each FCGS set is represented as ad-
dimensional binary tree constructing an organized data
structure that enables efficient nearest-neighbor search.
The kd-tree data representation is based on dimension
partitioning. For further information on thekd-tree refer
to [44]. Several algorithms for nearest neighbor search
that operates onkd-tree have been widely surveyed in
literature [45]. They take advantage of thekd-tree struc-
ture for the search of a point in one set that is the closest
to a query point in a different set. It should be noted
that the nearest neighbor search algorithm uses the Eu-
clidean distance criterion. However, due to the structure
of the feature vector, ourd-dimensional space is not ho-
mogenous and the Euclidean distance does not reflect
the grasping demands. Therefore we need another met-
ric, which will be used based on our grasping demands.
Moreover, we are not bounded to the closest point to
another; if our custom distance criteria fail, we can find
the second closest point and so on. Therefore we use
the k-nearest-neighbor search, which can find up tok
closest points to a query point.

5.2. Similarity Join
We use a similarity join algorithm to pair points

in each two d-dimensional setsEi ,E j . Function
JoinFCGS (Algorithm 4) receives the grasp sets
E1, ...,Eq ∈ Rd and for each two sets, using nearest
neighbor (NN) search (implemented using the MAT-
LAB2 knnsearchfunction), find for each vector in one
set the closest one in the other. FunctionNearestNeigh-
bor, which is called withinJoinFCGS, receives two
FCGS setsEi ,E j and outputs two parallel setsA,B,
which are stored in such a way that each vectorak ∈ A
is the closest one tobk ∈ B. As thed-dimensional space
is not homogenous, each two vectors found cannot be
considered as the same vector with only the Euclidean
distance. Therefore, we add a custom distance metric
that can be changed according to the properties of the
grasp, e.g., coefficient of friction, object manufacturing
tolerances, etc. Therefore we define the custom metric
between two vectorsx ∈ Ei andy ∈ Ei

|xi − yi | ≤ εi , f or i = 1, ..., 3n− 6 (27)

2MatlabR© is a registered trademark of The Mathworks, Inc.

where ε1, ..., ε3n−6 are predefined tolerances. This
means that the two feature vectors are to be inside a
hyper-rectangle with edge lengths ofε1, ..., ε3n−6. More-
over, we demand that each two respective normals (n̂x

i
from feature vectorx and n̂y

i from feature vectory) at
the contact points (represented in feature vectorej as
φ1

i , φ
2
i - for example, equation (23)) to both be inside a

friction cone, satisfying

cos−1(n̂x
i � n̂

y
i ) ≤ 2α ∙ tan−1 μ, 0 < α ≤ 1 (28)

whereα is a safety factor. This condition insures that the
angle between each two respective normals is smaller
than the friction cone angle multiplied by a predefined
safety factor. Conditions (27) and (28) are implemented
by functionIsSimilar(Algorithm 5), which receives two
feature vectors and returnstrue or false for satisfying
the conditions. First, in the first loop, the algorithm
checks whether condition (27) is satisfied for the first
part of the feature vector (the shape part). Second, the
algorithm restores the normal vectors according to the
angles given in each feature vector and then compares
them according to condition (28).

Algorithm 4 FunctionJoinFCGS(E1, ...,Eq)

Input: FCGS of each objectE1, ...,Eq.
Output: Registry setZ.

1: for i = 0→ q− 1 do
2: for j = i + 1→ q do
3: [A,B] = NearestNeighbor(Ei ,E j).
4: for k = 1→ size(A) do
5: if IsS imilar(ak ∈ A,bk ∈ B) = true then
6: Z = InsertToZ(ak ,bk , i, j)
7: end if
8: end for
9: end for

10: end for
11: Z = RearrangeReg(Z)
12: return Z.

When two vectors from two different sets are close
enough to be considered the same, they are to be in-
serted to a registry setZ ∈ Rd and the pointer stored to
their original grasp sets. The setZ is a d-dimensional
database of vectors taken fromE1, ...,Eq. The vectors
inserted toZ are the ones common to two or more sets
of E1, ...,Eq. LetUq be aq-dimensional vector space
of binary values, i.e., containingq-sized vectors of 0’s
and 1’s. Each common vectorvi ∈ Rd added toZ is
coupled to a compatible vectorṽi ∈ Uq. Component
r of vector ṽi denotes whether the vector is in the set
Er if labeled ”1” and ”0” if not. Therefore, two vectors,
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Algorithm 5 FunctionIsS imilar(x, y)
Input: Feature vectorsx and y representingn-finger

grasps.
Output: Are x andy within the predefined tolerances

(true/false).
1: for i = 1→ (3n− 6) do
2: if |x(i) − y(i)| > εi then
3: return False
4: end if
5: end for
6: for i = (3n− 5)→ d do
7: Calculaten̂x

i (x(i), x(i + n))
8: Calculaten̂y

i (y(i), y(i + n))
9: if cos−1(n̂x

i � n̂
y
i ) > 2α ∙ tan−1 μ then

10: return False
11: end if
12: end for
13: return True

ei ∈ Ei andej ∈ E j , which are considered to be the same,
are the input of procedureInsertToZ(Algorithm 6). It
takes the mean vectorvi,j of the pair and checks whether
it already exists in registry setZ (using IsS imilar). If
it finds vectoru the same asvi,j , it setsũi and ũj to 1,
meaning the point exists inEi andE j . If it does not find
the point inZ, it adds it and than marks it in the com-
patible grasp sets.

After the construction of registry setZ, function
RearrangeRegat the end of algorithm 4 extracts the
original vectors that constructed the vectors inZ from
their affiliated FCGS. They are extracted according to
the coupled binary vectors that denote in which FCGS
they exist. This function recalculates each vectorvi in
Z to be the mean vector of the original ones extracted
from the FCGS. That way, the vectors inZ denote more
accurately the original grasps in which they are origi-
nated from.

After a set of vectors common to two or more of the
setsE1, ...,Eq are acquired, classification is needed to
find the minimal number of grasp configurations that
can grasp subsets of the objects. This is done using the
classification algorithm presented next.

5.3. Classification

As we acquired a registry setZ ∈ Rd, we would now
want to classify the set of objects to a minimal num-
ber of subsets, where each subset can be grasped by its
respective grasp configuration.

Definition 3. A subset of vectorsH ⊆ Z is said to

Algorithm 6 FunctionInsertToZ(ei ,ej , i, j)

Input: Vectorei in FCGSi and vectorej in FCGS j.
Output: Updates registry setZ to containa,b.

1: vi,j =
( ei (1)+ej (1)

2 ...
ei (d)+ej (d)

2

)T

2: u = NearestNeighbor(Z, vi,j )//Find NN o f v.
3: if IsS imilar(vi,j ,u) = true then
4: ũ(i) = 1
5: ũ(j ) = 1
6: else
7: Add pointvi,j toZ.
8: ṽ(i) = 1
9: ṽ(j ) = 1

10: end if

cover3 all the primitive setsE1, ...,Eq if there exists
u1, .., uσ ∈ H such that for eachEi , where i= 1, ..., q,
there exist at least oneuj ∈ Ei for some j∈ [1, σ].

The d-dimensional registry setZ acquired in the pre-
vious algorithms contains the vectorsu1, ..., um ∈ Z,
which are common to two or more sets ofE1, ...,Eq. A
compatible set̃u1, ..., ũm ∈ Uq affiliates the vectors in
Z to the FCGS in which they exist.̃ui is a q sized bi-
nary vector consisting of one in componentj if ui exists
in E j and zero if not. The next step is to classify all vec-
tors in setZ to a minimum subset of vectorsH ⊆ Z
that covers all the primitive setsE1, ...,Eq. That is, clas-
sify the objects to a minimal number of subsets with its
compatible common grasp for each subset.

Assume a vectorui ∈ Z and its compatible binary
vector ũi ∈ Uq consisting one’s or zero’s. It can be
said that a subsetH ⊆ Z whereu1, ..., uσ ∈ H , covers
E1, ...,Eq if

σ∨

j=1

ũj = (~1)q×1 . (29)

This means we want to find a minimal number of bi-
nary vectors where their unification equals a vector of
ones. That is, a minimal number of grasps that can
grasp all objects. We seek to find a solution whereσ
is minimal and with priority equal to 1. If pointu1 is
found with its corresponding vectorũ1 satisfying con-
dition (29), it means that̃u1 = (1,1, ..., 1)T , meaning
there is one grasp (defined by feature vectoru1) that is
common to all sets. If a number of vectors is needed

3The notion of cover is different here from the set cover problem
discussed by [46], in which the problem is defined as the selection
of as few as possible subsets from a collection of subsets such that
every point in a universe set is contained in at least one of the selected
subsets.
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(σ > 1) to cover the FCGS, it means that the set of ob-
jects is divided intoσ subsets and each vector is in fact
a grasp suitable for the specific subset of objects (see
Example 5.3). We will finally obtainσ grasps forq ob-
jects divided intoσ subsets according to the compatible
grasp. Algorithm 7 presents functionClassi f ication,
which receives the setZ and searches for the minimal
number of vectors that satisfy condition (29). Some-
times it is possible to find more than one set of vectors
that cover the FCGS; therefore, the function returns the
set of vectors that have the maximum grasp quality.

Algorithm 7 FunctionClassi f ication(Z)
Input: Registry setZ.
Output: One or more common grasps.

1: σ = 1
2: while σ < size(Z) do
3: Find all possible combinationsH j = (u1, ..., uσ)

inZ which satisfy
σ∨

i=1
ũi = (~1)q×1

4: if successthen
5: Calculate Qj = min

Q
(u1, ..., uσ) of eachH j .

6: return H j satisfying arg max
H j

Qj(H j) // return

the grasp with the highest quality measure.
7: else
8: σ = σ + 1
9: end if

10: end while
11: return NULL // there is no common grasp.

Let registry setZ contain five feature vectors
u1, ..., u5 ∈ Uq that are common to two or more sets
of E1,E2,E3,E4 (q = 4 objects). After the application
of functionJoinFCGSonE1, ...,E4, each vectoruj is af-
filiated with a binary vector̃uj . For example, the five
outputted binary vectors are shown in (30). Binary vec-
tor ũ1 has 1’s in the first and fourth positions. Therefore,
the respective feature vectoru1 exists in FCGSE1 and
E4, meaning the corresponding grasp configuration can
grasp objects 1 and 4. Binary vectorũ5 equals (~1) and
therefore, it corresponds to a grasp configuration that
can grasp all the objects. If such a single binary vector
ũ5 that satisfies condition (29) does not exist, we would
search for the minimal set of binary vectors satisfying
the condition. In this example, we can take vectorsũ2

andũ4, where their union results in (~1). Therefore, we
classify the set of objects to subsets, grasp 2 corresponds
to grasp configurationu2 and will grasp objects 2 and 4.
Grasp 4 corresponds to grasp configurationu4 and will
grasp objects 1 and 3. Moreover, overlapping may oc-

cur, such as the union ofũ1 andũ3, which results in the
possibility of both grasp configurations grasping object
4. In such a case, object 4 will be grasped by the highest
quality grasp of the two. In the classification process we
divide the objects into classes, where each class has its
own grasp configuration.

5.4. Main Algorithm

The main algorithm for finding the common grasp of
a set of objects is given in Algorithm 8. It begins with
the mesh of the each object and the marking of forbid-
den zones by the user. After the mesh is acquired, the
generation of the FCGS can be done according to Algo-
rithm 3. Next, the similarity join is executed according
to Algorithm 4 in order to build the registry setZ. Fi-
nally, classification is done according to Algorithm 7 to
output the best grasp or grasps that are common to all of
the objects.

Algorithm 8 Common graspsearch
Input: 3D CAD’s of objectsB1, ..., Bq.
Output: A common grasp for all objects or common

grasps for subsets of the objects.
1: for i = 1→ q do
2: Mesh objectBi .
3: Manually label forbidden grasp regions on mesh

of objectBi .
4: Generate setEi using Algorithm 3.
5: end for
6: Z = JoinFCGS(E1, ...,Eq) using Algorithm 4.
7: H = Classi f ication(Z) using Algorithm 7.
8: return H = (u1, ..., uσ)

It should be noted that because we seek for a sim-
ple and minimal gripper, a minimal number of contact
points is desired. Therefore, Algorithm 8 is run starting
from n = 3 and if a solution is not found,n is increased
until a solution is found.

The following Theorem presents the final claim for
the algorithm to find a solution if one exists.

Theorem 4. The algorithm is complete: If a solution
of a single common grasp or a set of common grasps at
the vertices of the objects meshes exists, the algorithm
would find it. And if no solution exists, the algorithm
reports no solutions and exits.

Proof. The algorithm maps all possible grasps (up to
mesh size) to find the feasible ones. The Feasible ones
are those that are force-closure and have a quality mea-
sure greater than a defined lower bound. The feasible
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ũ1 =




1
0
0
1




ũ2 =




0
1
0
1




ũ3 =




0
1
1
1




ũ4 =




1
0
1
0




ũ5 =




1
1
1
1




(30)

grasps are parameterized to a feature vector in the fea-
ture space, injectively representing the grasp configura-
tion as a polytope with no reference to any coordinate
frame. The feature vectors are added to a set denoted as
FCGS of the compatible object. Once all feasible grasps
of all objects are mapped to the FCGS sets, Nearest
neighbor search is done to find pairs of common vectors
among the sets. The pairs found are checked to satisfy
tolerance demands and further added to a registry set of
common vectors. Classification is then done to find the
minimum set of vectors from the registry set that covers
all of the FCGS sets. The set consists of feature vectors
found to be common grasps of subsets of the objects.
The algorithm aims to find a single vector that exists in
all of the FCGS or a minimal set of vectors for subsets
of objects. The vectors found are in fact the grasp con-
figurations that are able to grasp the compatible subset
of objects. As we go through all possiblen-finger grasp
combinations (up to mesh size), therefore, the algorithm
will certainly find a common grasp or a set of common
grasps if such exist. Thus, if a single grasp for all ob-
jects or a set of grasps for subsets of the objects exist,
the algorithm will findthem.

6. Complexity analysis

Assumeq objects to be grasped, discretized to a
mesh with maximal sizek. We generate the FCGS of
all possiblen-finger grasps for each object. LetN be
the maximum number of possible grasps of an object,
and it will be the number of possibilities to choosen
contact points fromk possibilities without repetitions,
when the selection order is not important. Therefore,

the value ofN is

(
k
n

)

= k!
n!(k−n)! . The complexity

of the Quickhull algorithm [40] for generation of the
convex-hull is in the order ofO(nw log(nw)), wherenw

is the number of wrenches forming the convex-hull. In
the worst case, we generate a convex-hull for all (up
to mesh size)n-finger grasps with discretization of the
friction cone to ans-sided convex cone. The com-
plexity for generation ofq FCGS sets withN possible
grasps isO(q ∙ N ∙ n ∙ s ∙ log(n ∙ s)). We use the Quick-
hull algorithm as a triangulation algorithm as well (Sec-
tion 4.1). We perform up toq ∙ N triangulation (for

q objects with up toN possible grasps each) of then-
contact points to ann-vertices polytope and therefore it
is done withO(qN ∙ n logn) complexity. Nearest neigh-
bor search, using thekd-tree, between two sets ofN vec-
tors each is done by comparing for each vector in one
set to all vectors in the second set, and this is done with
O(N logN) complexity. We search for nearest neigh-
bors between each two possible combinations of sets,

and there are

(
q
2

)

=
q!

2!(q−2)! possibilities. Therefore,

the search for pairs between all combinations of two sets
of sizeN takes a number of inspections in the order of
O( q!

2!(q−2)! N logN).
Let m≤ N be the number of points inZ that are com-

mon to two or more sets. For each pair found, we search
Z for its existence in it using nearest-neighbor search.
In total, m inspections are done withO(mlogm) com-
plexity. In the worst case,m = N and assumingn� k,
summing up all the algorithms parts complexities yields
an overall time complexity ofO(kn).

The complexity is exponential to the number of con-
tact points. However, it should be noted that the com-
plexity presented is the worst case possible; the high-
complexity comes from the analysis of the convex-hull
and by adding Theorem 3 we filter out a large quan-
tity of non-force-closure grasps without generating the
convex-hull. Moreover, the FCGS for each object can
be computed in parallel, which significantly decreases
runtime. Parallel computation is implemented in the fol-
lowing simulations.

Figure 10: Four meshed objects.
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Figure 11: FCGS of object 3.

Figure 12: Registry setZ: vectors that are common to two or more objects (blue points) and vectors that are common to all objects (red squares).

Figure 13: The vectors in registry setZ that are common to all objects.

7. Test-run of the Algorithm

The following test-runs of the proposed algorithm
were implemented in Matlab on an Intel-Core i7-2620M
2.7GHz laptop computer with 8GB of RAM. The op-
eration of the algorithm was done using the MATLAB
parallel computing toolbox in order to reduce runtime.
The following tests present an example of the algorithm
for 3-finger frictional grasps of four objects.

7.1. Implementation and Results

Four objects (q = 4) were tested for the implementa-
tion of the algorithm and are shown in Figure 10. The

objects were meshed using COMSOL Multiphysics4 to
ak = 450 triangular mesh. We implement the algorithm
with a 3-finger frictional grasp, where the friction cones
at each contact point are modeled as 5-sided convex
cones (s = 5). Each object has an average of 915,630
feasible grasps. For the generation of the FCGS, the
construction of the grasp feature vector is done accord-
ing to Algorithm 1 and as described in example 2 (Sec-
tion 4.1). We filter-out force-closure grasps that have
a quality measure smaller thanQd = 0.1 (refer to Al-
gorithm 2). Figure 11 shows one generated FCGS for
object 3. Because it is a 9-dimensional space and only

4COMSOL Multiphysics is a registered trademark of COMSOL
AB.
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Figure 14: A 3-fingers common grasp illustrated on the four objects.

Figure 15: A 3-fingers common grasp of a phone, a soda bottle and a
banana.

for illustration, the set is shown in three 3-dimensional
projections.

For the similarity search algorithm, the tolerances of
the triangles shapeε1[mm], ε2[mm], ε3[◦] were chosen
such that the edges will not extend by more than 4% of
their original length. The parameters to compare (with
condition (28)) normals at the contact points areα = 0.5
(50% of the friction angle) andμ = 1.15. The friction
coefficient value was extracted from an experiment on
the materials to be used in the experiments presented in
the next section. In the experiment, a surface made of
the objects material was tilted until a small object made
of the fingertip material that was placed on it started to
slip. The angle of the surface in the slippage point was
49o and its tangent is 1.15, which is the friction coeffi-
cient of the two materials [47]. Figure 12 presents the
output of the similarity search. Registry setZ is illus-
trated and contains 53,796 grasps that are common to
two or more objects. Moreover, classification of setZ
provides 82 grasps that are common to all objects and
can be seen as red squares in Figure 13. The output of
the algorithm would be one grasp out of the 82 with the
highest quality measure. The computation run time for
this test case took approximately 30 hours. Figure 14
presents the best grasp with quality measureQ = 0.41.
This grasp is the best common grasp for all four tested
objects. Minor differences can be seen between the
grasps as the tolerances allowed. The differences can
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(a) (b) (c) (d)

63.1

33.2o 67.3o
88.15o

−22.5o

56.5o

φ1 = 94.5o

φ2 = 94.5o

φ3 = 85.4o

(e) (f) (g) (h)

Figure 16: (a)-(g) A 3-fingers common grasp for seven objects and (h) the gripper configuration.

Figure 17: Performance parameters of the algorithm relative to the number of points in the mesh, (a) solution time, (b) total number of grasps and
its percent of the number of possible grasps for the object, (c) number of grasps common to 2 or more shapes (size ofZ), (d) number of solutions
found.
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mostly be seen in the normals directions; however, due
to the friction cone, such deviation between the normals
is allowed. This will be verified in the experiments. The
mean feature vector as defined in (26) according to Al-
gorithm 1 is

e=




γ1

γ2

d1

φ1

φ2

φ3

ϑ1

ϑ2

ϑ3




=




46o

29.6o

69.7mm
96.5o

92.1o

90.5o

36.6o

−7.5o

16.6o




. (31)

This feature vector is the common gripper design pa-
rameters that will be used in the experiments presented
in the next section. We present test-runs for 3- and
4-finger grasps. The choice for the proper number of
fingers is defined by manufacturing demands, usually
to reduce stresses on the grasped object due to weight
or operational acceleration. However, with no such de-
mands, the algorithm would choose the minimal number
of fingers possible for a feasible grasp.

Figure 15 illustrates a common grasp example of
three irregular objects with mesh ofk = 400. Further-
more, we demonstrate the run of the algorithm with a
larger selection of objects. Figures 16a-16g show seven
objects and the common grasp configuration. The run
was implemented with the same conditions as previ-
ously described, and with mesh sizek = 250. After
runtime of 16 hours, 111 common grasps were found
and the one with the highest quality measureQ = 0.32
is presented in Figure 16h.

Figure 19 demonstrates the implementation of the al-
gorithm for a 4-fingers grasp wherek = 100. However,
it is hard to illustrate such a grasp as a figure, and devi-
ations can be seen between objects as result of different
orientations and allowed tolerances. The run time for
the 4-fingers computation was approximately 51 hours.

The outputted grasp configuration can now be used to
manufacture a simple gripper. The mechanical design is
straightforward. The fingers are located at the triangles
(in the 3 finger case) vertices. Moreover, each finger has
a linear DOF to apply contact force on the object in the
computed normals direction.

The proposed algorithm could also be used for re-
grasping the same object in different areas on its sur-
face with a simple grasp configuration. For example,
a mug can be grasped on its handle or on its top. Thus,
we can define these different regions as different meshes

(a)

(b)

(c)

Figure 18: Implementation of the algorithm for regrasping a mug with
a single grasp configuration: (a) The red meshes are the allowed re-
gion for grasping (color figure). (b)-(c) possible common grasps of
the handle and the mugs top region.

and search for a their common grasp. Figure 18 shows
results of a test-run on such mug. Figure 18a shows
the chosen regions to search for a grasp. The friction
coefficient was chosen to beμ = 0.6. The most quali-
tative common grasp is shown in Figure 18b. Another
possible grasp is a pinching-like configuration shown in
Figure 18c.

7.2. Performance

In Figure 17, some performance parameters of the
3D-OCOG algorithm are shown. Figure 17a presents
the CPU runtime of the algorithm as a function of the
mesh number. Exponential behavior of the run-time
can be seen as a function of the mesh size; this is ex-
pected from theO(kn) complexity calculated previously.
Significant improvement can be seen using Theorem 3,
which decreased the runtime by approximately 25%. It
should be mentioned that the implementation of the al-
gorithm was used with Matlab Parallel Computing Tool-
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box. In tests we have made, this parallel computation
decreased the runtime by 73%. It should be noted that
although the runtime is excessive, it performs offline.
Moreover, compared to manual gripper design time of
several weeks or months, this is a large improvement.

Figure 19: A 4-fingers common grasp illustrated on the four objects.

Figure 20: Sensitivity analysis with change of tolerance values.

Figure 17b shows the number of force-closure grasps
for each object and its percent of the number of possi-
ble grasps (including those that are not force closure) of
the object. There is small percentage of feasible grasps
over all possible grasps and Theorem 3 contributed to
filtering some of them out before the convex-hull crite-
rion. Figure 17c presents the number of grasps that are
common to two or more objects. Both Figures 17b and
17c show exponential behavior of the number of grasps
relative to mesh size. Figure 17d presents the number
of solutions found as a function of the mesh number. It

Figure 21: The experimental setup.

can be seen that as we increase the number of triangles
in the mesh, we can acquire more solutions. Therefore,
as we increase our mesh number, we can calculate more
accurate common grasps by the stringent similarity de-
mands defined in Algorithm 5.

Sensitivity analysis was done to examine the number
of solutions output with the change in the tolerances.
The data were calculated on a 3-fingers grasp with mesh
size ofk=100. The tolerances presented in the test-run
were multiplied by a factorξ so that the new tolerances
are (εnew

1 ... εnew
3 )T = ξ ∙(ε1 ... ε3)T , and the friction angle

is ξα tanμ. Figure 20 presents the change in the number
of solutions as a function of factorξ. Great sensitivity
can be seen with change of the tolerances, which con-
cludes that we can acquire many more solutions if we
are willing to accept reduced accuracy.

Figure 22: Simulation of the grasp planner.
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8. Experiments

A designated experimental system was built to test
the 3-finger grasp results outputted from the test-runs.
The system is shown in Figure 21 and is composed of
3 robotic fingers with 3-DOF each. The experimental
system and some experiments can also be seen in the
enclosed video clip. Each finger is built from 3 Dy-
namixel AX-12 actuators (Bioloid robotic kit), which
also serve as the joints. According to the grasp solu-
tion, the program automatically computes the angles of
the joints such that the grasp triangle is formed between
the fingertips, where its plane is horizontal (Figure 22).
Moreover, application of forces at the contact points are
done by small movements of the fingertips in the di-
rection of the normals according to the outputted grasp
configuration. Movement of the fingertips is calculated
using a kinematical model of the gripper built for the
experiment.

Each finger is equipped with an ATI Nano25
force/torque transducer. The transducer is used for ac-
quiring contact force data at each finger. An external
load applied to the objects simulates a disturbance force.
All fingers have 5[mm] radius hemispheric caps on their
tips to have a point contact. The force/torque transduc-
ers were connected to an NI Data Acquisition (DAQ)
board. Force data from the transducers was acquired
and processed using the Matlab DAQ Toolbox. The
force data of the transducers are acquired in the sensors
coordinate frames and therefore they are all rotated to a
central coordinate frameO.

Figure 23: The common grasp of the four objects.

Figure 23 shows the calculated common grasp tested
on the 4 objects. The objects were produced using rapid

69.7

46o

29.6o

7.5o

16.6o

36.6o

Figure 24: The grasp triangle defined by the mean feature vector.

Figure 25: Estimated magnitude of external forces applied to the ob-
jects inz direction.

prototyping with Connex5 500 3D printer. For the four
grasps, the common grasp is defined by the feature vec-
tor in (31) and is shown in Figure 24. Note that the nor-
mal directions are almost parallel to the triangle surface.
We present the results of the experiment on this specific
grasp where an external force was applied to the objects
in direction−z0 (down). The estimated magnitude of
the external force applied to each object is presented in
Figure 25. The external force is estimated using equi-
librium equations. The results for the reaction forces
on the fingertips are shown in Figure 26. The forces are
represented in reference frameO. Figure 27 presents the
calculation results of the angle between the force vector
and the normal at each contact point. It can be seen that
when the angles at each grasp are smaller than the fric-

5Connex 500 is a registered trademark of Objet Ltd.
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tion angle (marked by a dashed line) the grasp is stable.
However, when one of the angles exceeds the friction
angle, the fingers lose their grip of the object. During
the experiments, slippage was observed when exceed-
ing the friction angle, thus validating our results. There
are minor deviations in the results due to minor mea-
surement errors of the transducers and the joint angles,
which lead to transformation errors. Deviations might
also occur due to non-uniform surface roughness, which
affects the friction angle. However, despite the errors
and deviations, stability of the grasp is maintained un-
der the friction conditions and therefore we can say that
this specific common grasp configuration is feasible and
stable for the four tested objects.

The same experiment was done under several other
external load directions resulting stable grasps until the
friction angle is exceeded. Moreover, other grasp con-
figurations outputted from the algorithm were examined
with similar results. These experiments validate the
grasps and show that they are feasible common grasps
for the set of objects.

9. Conclusions

The 3D-OCOG algorithm presented in this paper is
based on the search of all possible force closure grasps
for each object and their mutual intersection to find the
common ones. Each object’s force closure grasps are
represented as a set in a high-dimensional space, where
each point in the set is a feature vector parameteriza-
tion of the grasp. The feature vector is the key element
of the algorithm as it represents the grasp configuration
injectively and invariant of any coordinate frame. Such
representation of the grasp enables comparison between
grasps and efficient similarity search based on nearest-
neighbor search. Classification is done between grasps
common to two or more sets to find the minimum set of
grasps that are able to grasp the set of objects. Simu-
lation results from a Matlab implementation were used
to generate the best common grasp for four objects and
were followed by experimental verification. The test-
runs and experiments verified the feasibility of the pro-
posed algorithm.

The proposed algorithm discretized the objects to find
common grasps. The probability to find a common
grasp increases as the mesh size increases, however we
pay with increased runtime. Moreover, two grasps are
considered the same if they are within the boundaries of
defined tolerances. Thus, the common grasp will not fit
exactly to the objects. In order to avoid increasing the
mesh size, future work will deal with post-processing
refinement of the common grasp over the object to find

an optimized configuration and locations on the objects
to achieve accurate fit. This will involve defining an
optimization problem constraining the contact points
to be on the surface of the objects within bounded re-
gions. These regions should be defined to be insideIn-
dependent Contact Regionsfound using the algorithm
proposed in [48]. In that case, force closure grasp is
maintained within these regions. Such refinement fea-
ture will enable the run of the algorithm with relatively
coarse mesh and larger tolerances.

The proposed algorithm could also be used for grasp-
ing with only two fingers. However, to do so we must
leave out the force-closure constraint. In that way, the
grasp would not be able to resist wrenches in some di-
rections. Future work could consider modification of
the proposed algorithm to two finger grasps. In such
case, the algorithm would generate a feature vector pa-
rameterizing a single line between the contact points.
A difficulty would be on dealing with excessive feasi-
ble solutions in such parameterization. Nevertheless,
this would make redundant the need for force-closure
checks. Thus, it could be a classical implementation of
a task based quality measure to select only grasps that
can resist the wrenches exerted in the intended task.

It should be mentioned that the size of all analyzed
objects should be in the same scale in order to acquire
solutions. As the difference in scale between objects
increases, the probability to find a common grasp de-
creases. Such a problem can be dealt in a future work
by adding degrees of freedom to the gripper to over-
come scale differences that are expressed in the feature
vectors. Performance analysis shows that larger mesh
results in longer solution time but produces more com-
mon grasps. However, the nature of the algorithm en-
ables parallel processing ofq objects, each of them on a
separate thread, which enables reduction of overall run-
time by almost 1/q.

Future work will involve reducing solution time by
using more or other sophisticated filtering conditions.
As we require more accurate solutions the convex-hull
computation gets more ”expensive” and such conditions
could replace it or filter-out non-feasible grasps prior
to the convex-hull computation. Moreover, by chang-
ing the similarity search algorithm to find points in the
FCGS that are similar in onlyd− 1 dimensions, we can
add degrees of freedom to a finger to minimize the dis-
tance of the remaining dimension and by this adding
more common grasp solutions. Such addition can be
beneficial where no solution is found due to the large
number of objects, objects scale differences, or when a
more accurate solution is needed.

The presented algorithm provides a minimum num-
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(a)

(b)

(c)

(d)

Figure 26: Forces at the fingertips (relative to theO reference frame) grasping (a) object 1, (b) object 2, (c) object 3, and (d) object 4.
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Figure 27: The friction angles at the fingertips change in time. The dashed line is the material friction angle.

ber of grippers needed to grasp a set of parts in a man-
ufacturing line. That is, a single gripper could grasp
several parts for several tasks and by that reducing the
number of robotic arms in the plant, gripper design and
manufacturing time and at the end reduce the final prod-
uct cost.
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