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Learning to Throw with a Handful of Samples
using Decision Transformers

Maxim Monastirsky, Osher Azulay and Avishai Sintov

Abstract—Throwing objects by a robot extends its reach and
has many industrial applications. While analytical models can
provide efficient performance, they require accurate estimation of
system parameters. Reinforcement Learning (RL) algorithms can
provide an accurate throwing policy without prior knowledge.
However, they require an extensive amount of real world samples
which may be time consuming and, most importantly, pose
danger. Training in simulation, on the other hand, would most
likely result in poor performance on the real robot. In this
letter, we explore the use of Decision Transformers (DT) and
their ability to transfer from a simulation-based policy into
the real-world. Contrary to RL, we re-frame the problem as
sequence modelling and train a DT by supervised learning. The
DT is trained off-line on data collected from a far-from-reality
simulation through random actions without any prior knowledge
on how to throw. Then, the DT is fine-tuned on an handful
(∼ 5) of real throws. Results on various objects show accurate
throws reaching an error of approximately 4cm. Also, the DT
can extrapolate and accurately throw to goals that are out-of-
distribution to the training data. We additionally show that few
expert throw samples, and no pre-training in simulation, are
sufficient for training an accurate policy.

Index Terms—Reinforcement Learning, Transfer Learning.

I. INTRODUCTION

THE ability of a robot to accurately throw an object to a
desired target can provide better efficiency to many tasks

such as packaging in warehouses, object transfer and recycling
[1]. By throwing an object, the robot utilizes its dynamics for
extending its reach. The robot can place objects in boxes or
bins positioned in farther region without the need to physically
reach them.

The throwing problem has been addressed in several ana-
lytical approaches where system models and parameter tuning
are required [2], [3]. In contrary, not much work has been
carried out using machine learning approaches. Nevertheless,
recent work combined a physics-engine simulation with a
regression network trained by real world throws [4]. While
the method achieved results outperforming human throws, it
requires an extensive amount of real world throws and some
prior how to throw. Similarly, Reinforcement Learning (RL)
applications for throwing requires a significant amount of real-
world samples in order to demonstrate sufficient performance.
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Fig. 1. (Top row) A simulated robotic arm is used to collect throw trajectories
acquired by random motions and arbitrary object release time. Four random
throws are shown where the object is marked with a yellow circle for better
visibility. (Bottom) A Decision Transformer (DT), trained off-line with the
simulated data, is shown to be able to extrapolate and generalize to out-of-
distribution goals such that a real robot is able to accurately throw to desired
ones.

Consequently, only few demonstrated such capabilities in
limited scenarios [5].

RL has been successful in many complex simulated tasks
including Atari video games [6] and physics-engine environ-
ments [7], [8] where the data is acquired at a lower cost [9].
However, training RL policies on real robots is a tedious and
time consuming task [10]. Hence, the lack of extensive RL
work on the object-throwing problem can be explained by the
logistic requirement for a large amount of real throws and a
reset mechanism to facilitate the collection. The robot may be
required to work for a very long time. More important, the
robot has no prior on how to throw and random actions may
pose danger and cause damage. Simulation-based learning,
on the other hand, provides a safe and cost-effective way
to collect data through interactions with the environment.
However, simulations rarely capture reality and the trained
policies are usually poorly transferred [11].

Classic online RL algorithms require to continuously apply
and update the current policy on the robot and collect on-
policy data. This online setting is usually time consuming
and very sample inefficient. Hence, it may be practical in a
simulation environment, but many real robotic applications
do not have the privilege of applying such online training
procedures. On the other hand, offline RL algorithms, such
as Deep Q-Learning and Deep Deterministic Policy Gradient
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(DDPG) [7], require data that is correlated to the distribution
of the current policy and are unable to extrapolate to new
out-of-distribution scenarios [12]. In recent years, significant
advancements in natural language processing and vision have
been credited to the development of the Transformer architec-
ture [13], [14]. In particular, an autoregressive model termed
Generative Pre-trained Transformer (GPT) [15] is responsible
for significant breakthrough in text-to-image [16] and language
models [17]. The Transformers were recently taken to the
world of RL in the form of Decision Transformers (DT) [18].
In DT, RL is considered as sequence modeling problem while
completely eliminating the need for bootstrapping for long
term credit assignment typically done in temporal-difference
learning. Hence, a policy can be learned from offline and off-
policy examples. Experiments in simulated environments have
shown some capability for out-of-distribution learning [16].
Yet and to the best of the authors’ knowledge, DT has not
been evaluated on real world robots and sim-to-real transfer.

In this work, we investigate the use of DT for multi-goal
object throwing with a robotic arm and its ability to reduce
the required number of real-world samples. In particular, we
are interested in investigating the sim-to-real ability of DT to
generalize from a simulation-based model to the real world.
Unlike prior work, no prior knowledge on how to throw nor
a particular object release time are given to the simulation.
Consequently, the sequence of actions for a throw motion
is fully learned and is not of constant length. In addition,
the simulation is not required to be tuned to the dynamic
parameters of the real system and arbitrary values can be used.
By using a simulation, the model is able to explore various
motions without any risk. We also observe the augmentation
of the simulated trajectories for data efficiency by using
the Hindsight Experience Replay (HER) [19]. Then, only a
handful of off-line recorded real throws is required in order to
fine-tune the model yielding accurate real-world performance.
The training data recorded off-line from simulation via random
actions is shown to be of a short range distribution. However,
the model exhibits ability, both in simulation and real world,
to accurately throw to out-of distribution goals.

To summarize, this work shows that a real robotic arm can
successfully learn a dynamically complex task by adopting
the DT architecture while dramatically improving sample
efficiency. Also, no visual perception is used in the process and
control is based solely on the joint state of the robotic arm. We
also introduce the first integration of HER with DT to exploit
arbitrary throws. The results expose the unique abilities of the
DT to transfer from an arbitrary simulation and extrapolate
using out-of-distribution training data. This has implications
to other systems beyond the throwing problem. To the best of
the author’s knowledge, this is the first implementation and
experimental analysis of sim-to-real with DT and using DT
for the throwing problem.

II. RELATED WORK

Throwing with robots. The throwing problem with pure
analytical models has been widely addressed [20]. In [21],
torque control was proposed in order to throw a ball with

an elastic manipulator. A different work provided a method
to optimize the shape of an end-effector along with a test-
case of planar object throwing [2]. Another work, on the other
hand, focused on the parametrization and motion planning of a
throwing motion [3]. However, these require knowledge of the
dynamic properties of the system which are usually difficult
to estimate. As a result, the approaches are not suitable for
unstructured environments with various uncertainties and may
exhibit low accuracy.

Not much work has studied the use of modern machine-
learning approaches for throwing. Early work used motor
primitives and meta-parameters learning with RL [5]. Nev-
ertheless, the method requires some prior understanding of
a throwing model and dynamic parameters. Later work used
a deep neural-network to map an image state observation
into a sequence of motor activations [22]. The approach was
demonstrated over a ball throwing scenario. In both of these
implementations, no actual throwing performance evaluation
was provided. In a more recent study, a robot has learned to
rapidly pick-up and throw objects based on image observations
[4]. The method consists of predicting the release velocity
using a physics-based controller of an ideal ballistic motion.
To compensate for the shortcomings of the physics-based
controller, the throwing module includes a regression neural-
network that predicts a residual on top of the estimated release
velocity. Hence, the method is based on a know-how throwing
prior and requires a significant amount real-world samples. In
contrast, our proposed method does not require any prior on
how to throw and only a handful of real throws are needed.

Sim-to-real. Learning a policy solely from a simulation
and deploying it to the real world is considered a hard
challenge. Such problem is commonly referred as the Reality
Gap or sim-to-real (simulation to reality). Many approaches
have been proposed for bridging the reality gap. Early ap-
proach suggested adding noise to the simulation [23]. More
recently, domain randomization was proposed where various
properties in an existing simulation are constantly changed [9].
Similarly, dynamics randomization was proposed to randomly
sample dynamic properties (e.g., robot link mass, damping and
friction) in the simulator during training [11]. Consequently,
the policy is able to adapt to uncertainties that may emerge
when transferring to the real system. Such approach, however,
requires full knowledge of the different dynamic parameters
in the model, and can be time-consuming since the policy
must experience a large variance of dynamic possibilities.
All of these approaches require the formation of a physics-
engine based simulation that is sufficiently close to the real
system and environment. Closing the reality gap is not easy
and collecting real world data is almost always inevitable. In
this work, we show that DT can provide an efficient sim-to-real
transfer from a simulation with arbitrary dynamic parameters.

Transformers and attention in Reinforcement Learning.
Although Transformers have shown great advancements in
language and vision in recent years, yet their impact on RL
is relatively small. Some work has been done with combining
transformers and attention mechanisms in RL [24]–[26]. How-
ever, such combination acts only as an additional mechanisms
to the existing actor-critic framework. As mentioned before,
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Fig. 2. Illustration of the robot with the object and goal.

a recent study re-framed the RL problem as a time sequence
problem and used the DT architecture alone to predict actions
[18]. In further work, the transformer was used to model
distributions over trajectories followed by beam search as
a planning algorithm to find the optimal trajectory [27].
Empirical evidence suggests that a transformer can model a
wide distribution of behaviors, enabling better generalization
and transfer [16]. This allows the DT to work well in an offline
setting, a task that is traditionally challenging due to error
propagation and value overestimation [28]. The DT framework
is adopted in this work for further study in the context of real-
world object throwing and sim-to-real.

III. METHOD OVERVIEW

A. Problem Formulation

State. An n degrees-of-freedom robot is given as illustrated
in Figure 2. Let s ∈ S be the state of the robot where S ⊂
Rn+1. As such, a state s = (θ1, . . . , θn, θgr) is comprised of
robot actuator angles θ1, . . . , θn and the binary state of the
gripper θgr ∈ {0, 1} indicating closed (1) or open (0). In this
form, a state st only includes current positions while missing
velocity and acceleration information. Hence, determining the
next state st+1 may require a sequence of past states.

Goal. The aim of the robotic arm is to throw a grasped
object to a desired goal xgoal ∈ R2. Goal xgoal = (xg, yg) is
a position on some horizontal plane in the vicinity of the robot
with respect to its base. Consequently, the throwing distance
is given by dg = ∥xgoal∥ and is an input to the DT. For safety
reasons, the throwing direction is determined analytically by
ϕ = arctan 2(xg, yg).

Action. Let at ∈ A be an action of the system at time t
where A ⊂ Rn+1. Hence, an action is composed of actuator
velocities ω1, . . . , ωn for the arm, and opening or closing
command agr ∈ [0, 1] to the gripper. The gripper is initialized
while closed on the object, i.e., agr = 1. Once condition
agr ≤ τ is satisfied for some pre-defined threshold τ > 0,
the gripper opens.

Reward. A sparse reward function is defined for a robot

throw in the form:

R(st,at) =


1, θgr = 0 ∧ ∥xland − xgoal∥ ≤ ρ,

−1, θgr = 0 ∧ ∥xland − xgoal∥ > ρ,

0, otherwise,
(1)

where ρ > 0 and xland is the actual landing position of the
object. A throw is considered successful if the first landing
point xland is inside a circle of radius ρ around the goal
position. The robot is penalized if the object did not land in
the circle. We note that non-sparse rewards did not provide
sufficient results in preliminary work and as indicated in [19].

The system can be described by the tuple (S,A,P,R)
where P = P (st+1|st,at, st−1,at−1, . . .) is the transition
probability function of the system. A traditional RL algorithm
requires to acquire a trajectory {s0,a0, r0, . . . , sT ,aT , rT },
for rt = R(st,at), that maximizes the expected reward
E
[∑T

t=0 rt

]
. In DT, on the other hand, pre-recorded roll-

outs are used for off-line training. Hence, one can only find a
trajectory that produces a desired reward as discussed next.

B. Decision Transformers

The Transformer was introduced by Vaswani et al. [13] to
efficiently model sequential data. It consists of an encoder
and decoder pair, containing stacked self-attention and cross-
attention layers, respectively, with residual connections. Se-
quential data is the input to the transformer in which each
element within it is termed a token. Each token is embedded
through a linear layer. Furthermore, positional encoding is
then added to the embedded token. The Transformer inputs
m embeddings and outputs m embeddings preserving input
dimensions. A GPT architecture later introduced some changes
to the original Transformer by utilizing only the decoder
part of the transformer and applying causal masking [15].
Consequently, the Transformer is forced to take into account
only previous tokens in the sequence instead of the whole
sequence. Thus, enabling autoregressive generation.

The DT, based on the GPT architecture, is illustrated in
Figure 3. It is inputted with w last time-steps yielding a
total of 3w tokens {R̂0, s0,a0, . . . , R̂w, sw,aw} where R̂i is
the reward-to-go [18]. Token embedding is performed with
a linear layer for each modality. After the embedding and
similar to positional encoding, a time-embedding is added
to the embedded tokens and further fed into the DT. During
training, a full recorded trajectory τ is inputted into the DT.
The DT predicts action at for each timestep t in the trajectory
based solely on tokens in the same or previous timesteps.
For each predicted action ãt, a loss is calculated comparing
between the predicted action ãt and the actual action at from
the recorded trajectory. The auxiliary loss is the sum of the
temporal losses and is given by

LDT =

T∑
t=1

loss(ãt,at). (2)

The DT network is trained by back-propagation with a set of
pre-recorded trajectories to minimize LDT .

During inference and at time t, the DT predicts
the next action ãt+1 based on all previous tokens
{R̂t, st,at, R̂t−1, st−1,at−1, . . .}. Action at+1 is then exerted
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Fig. 3. Illustration of the Decision Transformer pipeline. In a given timestep, the DT is inputted with previous rewards-to-go, states, actions and current
reward-to-go and state. It then predicts the next action to be taken in order to achieve the desired reward. After the predicted action is executed by the robot,
we observe the next state and calculate the new reward-to-go based on the received reward.

on the robot followed by observing the next state st+1 and
updating the reward-to-go R̂t+1. This process is repeated until
reaching the goal.

C. Data Collection and Augmentation

Training data is collected from a simulated environment
where the kinematics of the robotic arm are modeled. How-
ever, dynamic parameters, such as link inertia and mass, are
chosen arbitrarily and may be very different from the values
of the real robot. We assume that no prior motion of how to
throw exists. Hence, temporally correlated noise is injected
into the actuators of the simulated arm resulting in efficient
exploration through random motion. To generate such noise,
the Ornstein-Uhlenbeck process [29] is used in the form

xk+1 = (µ− xk)θ∆t+ σεk
√
∆t (3)

where xk is the noise at time-step k, ∆t is the sample time,
εk is a normal noise εk ∼ N (0, 1) and, θ, µ and σ are
process parameters. At the beginning of each throw trajectory,
a random goal is selected. In addition, a random time-step is
chosen for when the gripper will open and release the object.

In this work, we explore the benefits of data augmentation
based on the Hindsight Experience Replay (HER) [19]. Given
a trajectory where the object landed at position xland, Kher

samples are generated with the same trajectory while their
corresponding goals are randomly picked inside a circle of
radius 2ρ around the landing spot xland. For Kher = 0,
we always pick the landing spot as a goal. For Kher > 0,
goals with distance [0, ρ] and (ρ, 2ρ] from xland are considered
success and miss, respectively. This is done in order to create
a balanced dataset of successful and unsuccessful throws, and
to diversify the variance of rewards in the training.

With the above, a recorded trajectory will be of the form
τi = {s0,a0, r0 . . . , sTi

,aTi
, rTi

} (4)
where Ti is the length of the motion and sTi

is the state in
which the object was released. Trajectory τi is accompanied
with the goal xgoal determined in the augmentation. The
rewards included in the trajectory are updated based on (1) and
indicate whether the goal was successfully reached. Finally, a
dataset of M trajectories P = {τ1, . . . , τM} is obtained for
generating DT trajectories and training as discussed next.

D. DT Trajectories

As mentioned above, DT does not maximize expected
reward but instead produces a sequence of actions that should
yield a specifically desired reward. The desired reward is
inputted into the DT, and must be updated on the fly once
any reward is awarded. Therefore, we define the reward-to-go
token at time t as

R̂t =

T∑
t′=t

rt′ . (5)

Furthermore and since this is a multi-goal problem, the DT
must receive the desired goal for which to generate a sequence
of actions. Hence, the desired goal distance dg is concatenated
to the state, creating a state-goal token ŝt defined as

ŝt = (st∥dg), (6)
where ∥ denotes concatenation. The last token will be the
action as defined before. With the above said, each trajectory
τi ∈ P is reformulated to a DT trajectory consisting of
rewards-to-go, state-goals and actions in the form

τDT i
= (R̂0, ŝ0,a0, ..., R̂Ti

, ŝTi
,aTi

). (7)
The DT training set is now PDT = {τDT 1

, . . . , τDTM
}. In

this form, the DT can autoregressively train and generate new
actions on the fly.

E. Sim2Real Adaptation

The strength of training the DT in simulation is the ability to
learn how to throw without any prior while avoiding physical
risks. Such process over a real robot is very dangerous and
cannot be done. Nevertheless, the robot learns the general
motions in simulations while the reality gap prevents direct
transfer to the real robot. In order to fully transfer our model
to the real robot, the simulation-trained DT is fine-tuned with
a small number of throws collected from the real robot. To
do so, we exert the simulation-trained DT on the real robot
in order to conduct real throws to random goals. For each
throw, we multiply the actions {a0, . . . ,aT } with a random
gain α ∼ U(1, αmax). Multiplying the actions by α assists
in exploring the real robot domain and in bridging the reality
gap. We further augment the collected data as described in
Section III-C. The new throw samples are used to re-train the
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DT model and refine its weights for it to adapt to the new
domain.

IV. EXPERIMENTS

A. Setup

Robotic Hardware. The proposed approach is experi-
mented with a six-degrees-of-freedom Yaskawa Motoman GP8
industrial arm equipped with a Robotiq 2f-85 parallel gripper
(Figure 1, bottom). Needless to say, training a policy entirely
on such powerful robot without any prior of how to throw
is extremely dangerous. Without loss of generality and for
safety during testing, the throw motion is bounded to a plane
perpendicular to the horizontal floor and, thus, the DT learns
only to move the second, third and fifth joints. The direction
of throw is, therefore, determined analytically according to
(xg, yg) by ϕ and set by the first joint which is perpendicular
to the floor. Similarly, the remaining joints are set constant
to zero. Due to the dynamic specifications of the robotic arm,
the throwing distance is bounded to dg ∈ [50, 200] centimeters.
Furthermore, the gripper opens and releases the object when
value agr of the current action is below a threshold τ . The
value for τ is chosen to be the mean of all the gripper
actions in the training dataset acquired in simulation. The
communication frequency with the arm is 10Hz while the
maximum trajectory length is set to 1 second yielding an upper
bound of Ti ≤ 10 timesteps for a trajectory. Furthermore, we
allow the DT to access all previous steps at any given time
along the trajectory. The system is controlled using the Robot
Operating System (ROS). Videos of the experiments can be
seen in the supplementary material.

Throwing Evaluation. Fine-tuning and initial evaluation is
done by throwing a cube of size 1.5×1.5×1.5 cm with mass
of 15 g. Only for evaluation of the throwing performance in
the real world, a motion capture system with eight OptiTrack
Prime 41 cameras was used. Markers were attached on the
base of the robot, on a target plate and on the thrown object.
In this way, the robotic arm can automatically detect the goal
xgoal relative to itself and throw the object to the target. The
object landing position xland is also detected by the cameras.
A throw error is calculated by e = ∥xgoal−xland∥. We define
a test procedure in which an object is thrown to 30 uniformly
distributed pre-defined goals. The test accuracy is the mean
1
30

∑30
i=1 ei of all throws.

Simulation. The same robot was modeled in the ROS-
Gazebo physics engine. The dynamic properties of the sim-
ulated arm were chosen arbitrary while in the same scale of
the real one. Throw data was collected with an object of the
same size and mass as for the real system. Noise parameters
were set to θ = 0.02, µ = 0 and σ = 0.2. In addition,
data was collected with a success radius of ρ = 0.5 cm.
With these conditions, random trajectories were generated and
recorded for training the DT. Since no prior of how to throw
was given to the simulation, the recorded trajectories are out-
of-distribution to feasible throws. Examples of these random
non-feasible throws used for training are seen in Figure 1 (top
row).

B. Model Training

The acquired simulation data is used to train a DT model
as described in Section III. The model architecture and hyper-
parameters were optimized to yield the best simulation scores.
In particular, the DT architecture, based on GPT, was chosen
to be with embedded dimension of 128, 1 hidden layer, 1
attention head and a ReLU activation function. Actions are
predicted by including an additional linear layer at the DT
output. A Tanh and Sigmoid activation functions are applied
to the actuator velocities ω1, . . . , ωn and gripper command
agr, respectively, from the outputted action vector at. This DT
model yields a total of 210,058 trainable parameters. For the
DT model to predict actions, the loss function to be minimized
in training was defined to be the sum of the Mean Square
Error (MSE) on actuator velocities and Binary Cross Entropy
(BCE) on the gripper action. The model was trained using the
AdamW optimizer with a learning rate of 10−4, weight decay
of 10−4, dropout of 0.1 and a linear warm-up for the first 104

gradient steps. The model was trained for 100 epochs.

C. Simulation Results

We first analyze the performance of the DT in the simulation
environment.

Data quantity and augmentation. We begin by studying
the performance of the DT with regards to the amount of
simulated data and augmentation parameter Kher. A set of
1,000 random trajectories was collected in simulation as
described above. The DT was trained multiple times with an
increasing number M of trajectories. The baseline approach
is training the DT directly with the raw data without includ-
ing HER and augmentation. Hence, the DT is trained with
trajectories labeled by randomly generated goals and rewards
given accordingly for success or miss of these goals (0.005
probability of a success). Furthermore, for a specific number
of trajectories, training was performed over four different HER
augmentation parameters Kher = {0, 1, 3, 5}. For Kher = 0,
the actual landing position xland was set as the goal xgoal

of the corresponding trajectory. With data augmentation and
when Kher > 0, Kher additional trajectories were generated
with sampled goals in the vicinity of xland as described in
Section III-C.

Figure 4 presents throw accuracy results with regards to
the number of training trajectories and Kher. First, the model
reaches saturation with above 500 throws. In addition, HER
augmentation is shown to be significant in increasing the
accuracy. Nevertheless, augmentation with Kher > 0 (i.e.
adding more trajectories beyond the modified one) exhibits
no significant improvement over accuracy. Moreover, various
values for the goal radius in the range ρ ∈ [0.5, 20] cm were
tested while not providing significant change in performance.

Data Sparsity. We next analyze the ability of the DT to
generalize and extrapolate to out-of-distribution goals. Figure
5 shows the distribution of 500 collected random trajectories
(in black) used for training with respect to the throwing
distance dg and when Kher = 0. Examples of such throws are
seen in Figure 1 (top row). Only 14% of the random throws
resulted in the object landing within our desired working range
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Fig. 4. Throw accuracy with regards to the number of training trajectories
and HER augmentation parameter Kher .

Fig. 5. Distribution of throws in the training dataset (black) compared to
successful test throws (red). Despite the sparsity of throws for dg > 50cm
in the training dataset, DT manages to make accurate throws to out-of-
distribution goals.

dg ∈ [50, 200]. On the other hand, Figure 5 also shows (in
red) the distribution of 1,000 successful throws (i.e., hit within
1cm radius) to the desired range dg ∈ [50, 200] while using
the trained DT policy. Hence and during test time, the DT
manages to hit out-of-distribution goals within this range with
high success rate. Figure 6 shows an example of a successful
simulated throw where the goal is out-of-distribution to the
training trajectories.

Baseline Comparison. We compare our results to DDPG
[7], Behavioral Cloning (BC) [30] and Residual Physics
(RP) based on [4]. DDPG is a common Temporal-Difference
learning algorithm for continuous control. Similar to DT,
BC is a supervised learning algorithm. The objective of the
comparison is to analyze whether common RL approaches,
i.e., DDPG and BC, can match the throw accuracy and data
efficiency of the DT. Contrary to DT, RP is based on prior
throw know-how based on a simple ballistic motion. A residual
network is used to compensate for model uncertainties. A
similar setup and training process were performed for all
methods. All methods were trained and tested in simulation.

The hyper-parameters of the models were optimized to
converge and reach minimal loss. For DDPG, the actor was

Fig. 6. Deployment example of the trained DT on the simulated robot for
throwing the object to a desired target.

TABLE I
BASELINE COMPARISON

Method Number of Mean error Stability
throws (cm) (cm2)

Random throws 500 121±136 -
BC 500 Random 39.3±32.8 6
DDPG 6,360 On-policy 17.8±14.0 3,020
RP [4] 500 Model-based 22.1±20.3 96
DT 500 Random 8.2±6.4 67

Fig. 7. Number of real throws required for fine-tuning the DT model.

Fig. 8. Throw accuracy with regards to the distance of the goal dg for (blue)
simulated robot, (green) real robot with non fine-tuned DT and (orange) real
robot with fine-tuned DT.

formed by a Multi-Layer Perceptron (MLP) with two layers
and 64 neurons, each. Similarly, the critic is formed of two
layers and 256 neurons, each. A buffer of 10,000 trajectories
was used and trained for 100 gradient steps for every 40
trajectories executed. The learning parameters are as described
in Section IV-B. Similarly, data augmentation is as described
in Section III-C. Different Kher values were tested while the
best convergence was achieved with Kher = 7. Furthermore,
the optimal radius value for the reward (1) is ρ = 2cm.
BC is implemented similarly to DT with only successful
trajectories by relabeling goals with true landing positions
and with Kher = 0. Failed trajectories, on the other hand,
were not included as the policy would perform poorly. BC
is implemented with an MLP of three layers comprising
{64, 128, 256} neurons. The current and ten past states are
inputted to the MLP which, in turn, outputs the next action. RP
is implemented by fixing the release position at a fixed angle
of 45◦ as in [4]. Only the magnitude of the release velocity
is controlled and is a function of the desired goal distance
according to ballistic equations. After collecting 500 throws
to random goals (with accuracy of 34.6cm), a residual model
based on an MLP is trained with the throw data to compensate
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Fig. 9. Seven test objects including (a) cuboid (with
reflective markers, (b) squeeze ball, (c) cylinder, (d) box
(e) sand ball, (f) copper coil and (g) pencil.

Object
CM grasp Non-CM grasp

Mass Dimensions Success Rate for dist. Success Rate for dist.
(g) (cm) 80cm 130cm 180cm 80cm 130cm 180cm

(a) Cuboid 15 1.5× 1.5× 1.5 100% 100% 100% - - -
(b) Squeeze ball 25 radius 3 100% 100% 100% 100% 50% 50%
(c) Cylinder 50 radi. 2, heig. 8 100% 100% 100% 100% 60% 60%
(d) Box 120 3× 6× 9 100% 100% 100% 100% 40% 40%
(e) Sand ball 60 radius 2.5 100% 100% 100% 100% 0% 0%
(f) Copper coil 386 radi. 2.2, heig. 6.5 100% 100% 90% 90% 40% 0%
(g) Pencil 6 radi. 0.4, len. 18 100% 100% 100% 90% 50% 40%

Fig. 10. Throwing success rate out of 10 throws for seven test objects.

Fig. 11. Snapshots of four throws (from top to bottom): squeeze ball (dg = 180cm), pencil (dg = 180cm)and box (dg = 90cm). Objects are marked with
a yellow circle for better visualization.

for uncertainties in the ballistic model. It is composed of two
layers and 32 neurons each. The model receives the desired
goal distance and outputs correction residual to add to the
release velocity.

Table I presents the comparative results between the three
methods along with another baseline of sole random throws
to arbitrary goals without any policy. We note that in the test,
goals are set in out-of-distribution distances. Hence and in
terms of accuracy, DT outperforms with the best accuracy and
exhibits the ability to extrapolate to farther distances. On the
other hand, DDPG, BC and RP provide poor results while
better than random throws. While DDPG has better results
than BC, it requires a large amount of training data. Similarly,
RP requires much more data in order to compensate for
uncertainties not included in the ballistic model. The learning
stability was also evaluated by measuring the variance of the
evaluation score across the epochs. Results show that DT
stability is lower by an order of magnitude than DDPG.

D. Real Robot Results

Fine-tuning with Real Throws. When transferring the
pre-trained DT model to the real robot, the yielded mean
error for test throws is 80cm. As described in Section III-E,
the simulation model acts as a prior and real throws are
required in order to fine-tune it. Hence, a dataset of real
throws was collected by generating a set of random goals
and attempting to throw to them using the pre-trained model
and when αmax = 3.0. After applying HER, the prior DT
model is refined. We next analyze the required number of
real throws to reach accurate performance. Figure 7 presents

the mean throw error with regards to the number of real
throws. For comparison, we also train a new DT model
without prior training in simulation and with only the real
throws. Real throws, in this case, are not random throws but
expert demonstrations that were recorded while exerting the
simulation-trained policy. These could not be acquired with
random actions as few hundreds would be needed (see Figure
4) while posing danger. Results show significant accuracy
improvement with only a handful of real throws. For instance,
fine-tuning with only 5 and 10 throws reduces error to less
than 11cm or 6cm, respectively. With more throws, accuracy
keeps improving while improvement rate declines. The error
with 50 throws is 4.3cm. Results with only expert throws
are similar and show ability to train a new model with only
few good samples. We note that deploying and fine-tuning the
simulation-trained BC model on the real robot failed due to
disordered and dangerous motions.

Real Robot Performance. The best performing model
from the previous section is chosen for further analysis. Figure
8 shows throw accuracy for the simulated and real robots with
regards to the distance to the goal dg . For reference, we include
simulated results with scaling of the same α as in the above
fine-tuning. First, the real robot performs very poorly with
a non fine-tuned DT emphasizing the significant reality gap.
However, with only few real throw samples for fine-tuning,
the DT model achieves better accuracy than the simulation
with a mean error of 4.3cm. For both domains, higher errors
are apparent for targets farther than 170cm as the throw is
more complex. On the other hand, throwing to a 15× 15 cm
target box positioned in distance of up to 180cm would yield
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approximately 100% success rate.
Generalization To Other Objects. We next test the ability

of the DT to generalize to other objects without additional
fine-tuning. Along with the cuboid, we test an additional six
objects, seen in Figure 9, including: squeeze ball, cylinder,
box, sand ball, copper coil and pencil. Each object is tested
for success rate in throwing to short (80 cm), medium (130
cm) and long (180 cm) distance goals. For each goal, the
object is thrown 10 times. A success is defined to be hitting a
rectangular plate of size 15×15 cm. Table 10 summarizes the
success rate for the throws along with physical properties of
the objects. For better understanding, we make a distinction
between throws where the initial grasp is on or off the Center-
of-Mass (CM) of the object. Off-set to the CM is randomly
placed in each throw. When grasping the object on its CM,
the model generalizes well and the success rate is high for
all objects. However, throws with non-CM grasps to medium
and long distances have lower success rate. While having
some ability to hit the goal, the model was not trained to
compensate for object elongation yielding throw bias. For such
compensation feature, the model must have a mean to measure
the location of the CM, which is not available in this work.
We leave this to future work.

V. CONCLUSION

In this work, we have proposed a data-efficient framework
for object throwing with DT. A policy is trained off-line
using data recorded in simulation through randomized actions
without any prior on how to throw. In addition, the simulation
consists of arbitrary physical parameters without any pre-
tuning to the real robot. Then, the DT is fine-tuned with only
several real throw examples. In particular, a set of 5-10 throws
is sufficient to provide throw accuracy of less than 10cm.
Furthermore, experiments on a set of different object yielded
high success rate. However, when grasping an object off its
CM, the success rate declines. Future work may consider
addressing this by including visual feedback or a Force/Torque
sensor that can embed grasp off-sets from object CM. Also,
Promt-DT [31] can be used to ease the sim-to-real transfer
by adding real trajectories as prompt to the simulated trained
DT.
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