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Robust classification of grasped objects in intuitive
human-robot collaboration using a wearable

force-myography device
Nadav D. Kahanowich and Avishai Sintov

Abstract—Feasible human-robot collaboration requires intu-
itive and fluent understanding of human motion in shared tasks.
The object in hand provides the most valuable information about
the intended task of a human. In this letter, we propose a simple
and affordable approach where a wearable force-myography
device is used to classify objects grasped by a human. The device
worn on the forearm incorporates 15 force sensors that can imply
about the configuration of the hand and fingers during grasping.
Hence, a classifier is trained to easily identify various objects
using data recorded while holding them. To augment the classifier,
we propose an iterative approach in which additional signals are
taken in real-time to increase certainty about the predicted object.
We show that the approach provides robust classification where
the device can be taken off and placed back while maintaining
high accuracy. The approach also improves the performance of
trained classifiers that initially produced low accuracy due to
insufficient data or non-optimal hyper-parameters. Classification
success rate of more than 97% is reached in a short period of
time. Furthermore, we analyze the key locations of sensors on the
forearm that provide the most accurate and robust classification.

Index Terms—Human-Robot Collaboration, Intention Recog-
nition.

I. INTRODUCTION

IN collaborative tasks between two humans, when one is
assisted by another, some tasks can be done intuitively

without verbal communication. Once one human sees the
motion of his human fellow, usually his arms and manipulated
objects, he recognizes an intended upcoming task and exerts
supporting actions. For instance, when assembling two parts
together, a human assistant can hold one part for support or can
handover appropriate tools. Similarly, an upper-limb amputee
would need another hand to open a bottle. In Human-Robot
Collaboration (HRC), robotic arms should do the same to
support a human in completing shared tasks [1]. Moreover,
robot assistance could be carried out to prevent endangerment
of humans. The major attempt has been to integrate HRC
approaches in robotics to support humans with disabilities [2]
or in performing tasks that require more than one participant
[3].
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Fig. 1. Intuitive collaboration between a robotic arm and a human
in (left) food serving and (right) pouring from a bottle to a mug.
A wearable Force-Myography device on the human arm is used to
measure musculoskeletal activities that imply on the object that is
grasped by the human.

A challenging problem in HRC is to signal the robot of
a desired assistive task efficiently and naturally. Some HRC
solutions, however, provide non-intuitive control methods such
as human gestures [4] or sensing brain activities [5]. Another
common approach is Electromyography (EMG) [6] in which
electrical signals from the muscles are measured through
electrodes and translated to limb movements. The EMG tech-
nology, however, requires large and costly equipment, and its
accuracy is compromised by sweat, electrode placement and
crosstalk [7]. Early work by Amtf et al. [8] have introduced the
use of body-worn force sensors to identify patterns in forearm
muscle activities. Further work have shown the possibility to
identify hand gestures using Force-Myography (FMG) signals
[9], [10]. FMG measures perturbations of the musculoskeletal
system and has been reported to be simple to acquire with
a relatively high-accuracy [11]. Consequently, acquired FMG
data was used in data-based classification of hand gestures
[12]. However, data was recollected and a classifier was trained
each time that the sensors have been placed on the arm.
Hence, once the sensors have been dislocated, the previously
trained classifier significantly loses its accuracy. As opposed
to EMG, FMG requires low-cost sensors and a simple portable
acquisition device (e.g., Arduino board), and is less sensitive
to sensor positioning variations [7], [13]. Furthermore and
according to the author’s knowledge, there has not been any
attempt to reason about objects within-hand through FMG
measurements which is crucial for identification of intended
tasks in HRC.

In this work, we use FMG measurements to identify objects
in a human hand which, in turn, imply about the intended task
(Figure 1). An object is characterised by its geometry and
weight which are reflected by the musculoskeletal state of the
arm grasping it. Hence, we investigate the ability of a classifier,
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trained with measured FMG signals, to classify a grasped
object from a given set of objects. We aim to rely solely
on a low-cost FMG device directly strapped on the human
forearm to provide an affordable solution. Previous work
included either lower [14] or upper forearm [15] FMG bands.
Yet, it is not clear what are the sensing locations required
for accurate and robust predictions. Hence, we provide an
analysis of the classification accuracy with regards to the
placement of the sensors. In addition, we hypothesize that
better coverage along the forearm will augment the model
and provide better accuracy. Hence, the lightweight wearable
FMG device incorporates 15 force-sensitive resistor sensors
placed on the lower and upper forearms. Data collected from
the FMG device is further used to train a robust classifier
to identify objects in hand. We focus on observing object
classification using FMG for a single participant while leaving
global classifiers for future work. We show that the classifier
is robust to re-positioning of the device, i.e., once the classifier
has been trained over collected data, it maintains its accuracy
even if the device has been taken off previously.

While we show that we can acquire a relatively accurate and
robust classifier of objects in hand, we propose an Iterative
Classification (IC) algorithm to further improve classification
performance. IC is used to increase prediction certainty by
sampling additional FMG data. We exploit the continuous time
frame in which the user holds a certain object making more
samples instantly available. The iterative method can be used
with any classifier that provides a class probability distribution.
Under some conditions, the iterative process will improve
accuracy and robustness even for a classifier that does not
provide high success rate by itself. Hence, IC can be exerted
on classifiers trained with insufficient data or over a non-
optimal classifier model. To conclude, the main contribution
is an approach that enables accurate and robust classification
of objects in a human hand using affordable, lightweight and
easy to use hardware.

The proposed algorithm is able to provide fast and reliable
results in real-time which is essential for practical HRC.
For a task planner to decide about a future robot assistive
manipulation, it must first be informed of the object in the
human hand. The object provides significant information about
the upcoming task even before the human arm has begun to
move and enables a substantial reduction in the set of possible
actions to be performed by the human. Hence, the robot can
infer about future actions of the human beforehand and plan
a trajectory accordingly [16]. The plan will be updated in
real-time with more information about the human and object
motion. Related work on the above topics are discussed next.

II. RELATED WORK

In HRC, common control methods that have been used to
efficiently signal the robot of a desired assistive task are quite
limited. Many assistive robots are specially designed for a
specific task in a priori known environment [17]. Other assis-
tive arms use non-intuitive control methods such as predefined
human gestures and gazes [4], [18] or brain-computer interface
that sense brain activities [5]. Specially designed gloves such

as in [19] measure both acceleration and flexion for motion
capturing and virtual reality. However, these gloves limit the
tactile sensation of the user and thus, not suitable for general
use. A widely researched approach is to acquire and classify
neurological activities through Electromyography (EMG) [6],
[20], [21]. EMG detects electrical signals generated by muscle
tissue and implies the human subject’s intention. Even though
this method frees the hand and allows full tactile sensation, it
usually requires expensive and highly sizable equipment [7].
In addition, different artifacts and crosstalk may decrease the
quality of the signal [22].

A different technique to recognize intention is through
Force-Myography (FMG) where force sensors capture radially
directed force distributions through expansion and contraction
of the musculoskeletal system [23]. Prior works [8], [9] have
shown that exterior sensing of muscle surface perturbations
incorporates important information about task activity. A work
study in [10], [11] has advanced the idea by identifying finger
motions from muscle perturbation via force sensors on the
forearm. While their methodologies did not allow having a
wearable system for real-time feedback, these studies have
established the feasibility of using FMG for monitoring upper-
extremities gestures. More recently a wearable device has
been proposed [15] that is composed of a linear set of eight
force sensors. A classifier was trained to identify in real-time
hand postures. Similarly, a wearable FMG feedback system
was used to detect four basic hand motions in rehabilitation
analysis [12].

Motion prediction based on extracted features of human
motion can be divided into two categories, model-based and
model-free. Model-based approaches establish an analytical
function for mapping between measured features to the kine-
matic or dynamic behavior [24]. Model parameters are studied
and refined through experiments but are challenging to eval-
uate accurately. On the other hand, the model-free approach
is a black-box mapping acquired through machine learning
[25]. A large amount of data is used to train an Artificial
Neural-Network to map sensed features to the current gesture
or posture of the hand. As such, the works in [26], [27] trained
a neural network to map EMG signals to joint angles of the
upper-limb.

III. METHOD

A. Wearable FMG device

As previously described, prior work included either upper
or lower forearm bands. To improve accuracy and to ana-
lyze the dominant measurement locations, we have combined
both and fabricated a wearable device with wider coverage
along the forearm). The device is composed of 15 low-cost
Force-Sensitive Resistors (FSR), model FSR-402 by Interlink
Electronics. FSR sensors are made of polymer films that vary
their electrical resistance upon changing pressure on their
surface. The device consists of three main components: (a)
upper forearm band with six FSR sensors, (b) lower forearm
band with nine sensors organized in two rows and (c) a data
acquisition system based on an Arduino Mega 2560 board. The
FSR sensors were positioned in equal spacing along the bands



KAHANOWICH et al.: ROBUST CLASSIFICATION OF GRASPED OBJECTS IN INTUITIVE HUMAN-ROBOT COLLABORATION 3

as seen in Figure 2. We note that the device includes two bands
for prototyping considerations but can easily be fabricated
as one unit. The bands were fabricated by 3D printing with
an elastic polymer (Thermoplastic elastomer). They include
a flexible bulge for each sensor to ensure proper attachment
to the skin while maintaining flexibility during arm motion.
Each FSR sensor is connected to an analog pin of the Arduino
through a voltage divider of 4.7kΩ resistor. Such acquisition
configuration provides real-time data stream of all the given
sensors in a frequency of up to 300Hz. The described system
is composed of low-cost and light-weight hardware which is
appealing and suited for easy arm movements.

Fig. 2. Prototype of the FMG wearable device made of two parts
for the upper and lower forearm. Each part includes a set of force-
sensitive resistors (FSR) designed to sense perturbations of the
musculoskeletal system.

B. Neural-Network classifier

We aim to identify an object grasped by the human solely
by measuring FMG signals measured by the device. Given a
set of m objects {O1, . . .Om}, we require to identify an object
from the set. That is, we require real-time classification based
on pattern recognition of the input signals. This is achieved
through supervised learning with the use of a feed-forward
Neural-Network (NN) trained over labeled signals.

Let φ ∈ Rn be the observable state of the musculoskeletal
system measured by the FMG system with n FSR sensors.
For each object Oi, training data is collected by holding it
as seen in Figure 3. We record grasps of objects as intended
during tasks, e.g., grasping scissors by their ring handles. To
increase data variance, the data was recorded in various arm
postures, i.e., while arbitrary moving the shoulder, elbow and
wrist. Ultimately, the resulting training data is a set of M
labeled FMG signals Φ = {(φ1, l1), . . . , (φM , lM )} where
label li corresponds to object Oli . However and as described
previously, we aim to acquire a model robust to replacing of
the FMG device. Recording data after a one time positioning
of the device will not be robust and a trained model is most
likely to fail after taking-off and re-positioning.

Classification failure while using the above formulation will
happen for two reasons: inability to re-position the device at
the same location and inability to tighten it with the same
forces each time. For the former challenge, we collect data
in N episodes where, in each episode, the device is taken-
off and re-positioned. To cope with the different tightening
forces at each episode, we consider episode values relative to
the initial forces after strapping in. Thus, at the beginning of

episode j, the user is required to perform a simple calibration
process in which the muscles are relaxed prior to picking up
the object. The FMG baseline signal φ(j)o during the relaxation
is subtracted from the episode measurements to decrease
variance, i.e., a signal is now given by φ̃(j)i = φ

(j)
i −φ

(j)
o . Next,

since the data is significantly noisy, we apply a simple Mean
Filter of width w to each sensor measurement. A Median filter
exerted similar results. However, while Mean filters suppress
noise, unique features of the data may be lost. Hence, a
multitude of measurement vectors of different classes may be
described with the same mean, leading to low classification
accuracy. Therefore, we include the standard deviation of
each sensor measurement which retrieves some previously lost
distinctive features of the class. Hence, a processed signal of
episode j is now x

(j)
i ∈ R2n including both mean and standard

deviation of n signals along a window of length w.
The labeled dataset is now composed of N episodes Φ =

Φ1 ∪ Φ2 ∪ . . . ∪ ΦN where Φj = {(x(j)
1 , l1), . . . , (x

(j)
M , lM )}.

Dataset Φ can now be used to train a NN mapping to classify
a set of objects, i.e., train map h : R2n → [0, 1]m such
that a class probability distribution p = {p1, . . . pm} (where∑

m pi = 1) using h(x) is computed by p = h(x). Next,
we present an iterative classification method in which models,
even with low certainty, can be improved by sequentially
drawing more samples.

C. Iterative Classification

A trained classifier may yield object identification with low
certainty due to noisy measurements, insufficient measurement
data or non-optimal model. Nevertheless, we may exploit
the continuous time frame in which the user holds a certain
object. While common classification tasks rely only on one
sample for prediction, in our case, we may rapidly acquire
additional samples while being certain that they originate from
the same class. Consider FMG signals arriving sequentially
{x1,x2, . . .} in real-time while holding an unknown object.
It is required to estimate conditional probability for class
Oi given k sequential samples, i.e., Pk(Oi|x1, . . .xk). We
propose to use an iterative process where a score is given in
each iteration based on prediction certainty. Unlike sequential
Bayesian update [28], the proposed approach can be used with
any type of classifier that provides a probability distribution.

The Iterative Classification (IC) process is described in
Algorithm 1. We track the scores of the classes based on the
predictions for each sample provided by any chosen classifier.
We maintain a vector s = (s1, ..., sm) of cumulative scores for
the classes. In each iteration, a signal x is sampled, followed
by acquiring a class probability distribution p = h(x).
Generally, function h can be any trained classifier that outputs
a probability distribution of the prediction. The probability
output is considered as the certainty of the classifier to its
prediction and the score to the class prediction. Hence, the
highest probability pi in p is the iteration score for class i and
is added to si. This process is repeated until the normalized
cumulative score ŝmax for some class reaches above a lower
bound λ ∈ [0, 1]. It is also possible to fully accumulate (FA) all
class scores by updating s with all iteration probabilities, i.e.,
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replace lines 5-6 in Algorithm 1 with s ← s + p. However,
this will result in an excessive number of iterations for ill-
trained classifiers while requiring a carefully tuned λ. For a
sufficiently trained classifier, FA would provide only marginal
accuracy improvement as will be seen in the experimental
section.

Algorithm 1: iterative classification(λ)

1 Initiate elements of s = {s1, ..., sm} to 0;
2 repeat
3 x← sample();
4 p← h(x);
5 i← argmax(p);
6 si ← si + pi;
7 o← argmax(s);
8 if first iteration then
9 ŝmax ← so;

10 else
11 ŝmax ← so/ (

∑
i si);

12 until ŝmax > λ;
13 return o ; /* return class index */

Let P (l = j|Oi) be the probability for classifier h to assign
label j to a grasped object Oi such that

m∑
j=1

P (l = j|Oi) = 1. (1)

A sufficiently trained classifier must satisfy

P (l = i|Oi) > P (l = j|Oi) (2)

for any i, j ∈ {1, ...,m} and j 6= i. Naturally, higher values
of P (l = i|Oi) for all i ∈ {1, . . . ,m} mean a more accurate
classifier. In many cases, prediction probability of incorrect
predictions tend to be lower than the prediction probability
for correct examples [29]. Hence, given pmax = max(p),
the expected value for pmax when successfully classifying
object Oi would be larger than an erroneous prediction. That
is, statement

E(pmax|l = i,Oi) > E(pmax|l = j,Oi) (3)

holds for any j 6= i. According to Algorithm 1, vector s
accumulates scores for class predictions with the increase of
iterations. In addition, a score is given to sj only if label l = j
is assigned to the query object in a particular iteration. Hence,
the expected normalized value ŝj of component sj given object
Oi is

E(ŝj |Oi) = E(pmax|l = j,Oi)P (l = j|Oi) (4)

for any j ∈ {1, . . . ,m} and where ŝj = sj/ (
∑

i si). One may
view ŝj as the probability approximation for grasping Oj after
some number of iterations, i.e., ŝj ≈ Pk(Oj |x1, . . .xk). From
(2)-(4), it must be that

E(ŝi|Oi) > E(ŝj |Oi), ∀j 6= i. (5)

While we acknowledge that class probability distributions
outputted from a softmax layer may not always reflect the true

certainty of its prediction [30], preliminary results show that
condition (3) holds in our case. Nevertheless, even with a more
strict assumption, where pmax for any prediction (erroneous
or not) has a uniform distribution pmax ∼ U( 1

m , 1) such that

E(pmax|l = i,Oi) = E(pmax|l = j,Oi) =
m+ 2

2m
, (6)

statement (5) remains valid due to (2).
The above statements imply that as long as a classifier

satisfies (2), the expected cumulative score E(ŝi|Oi) will
increase and converge to an higher value than E(ŝj |Oi)
(j 6= i), with the increase of classification iterations, i.e., ŝi is
more likely to be equal to ŝmax. Hence, the certainty about
the prediction will grow with the addition of more samples.
In turn, this will result in continuous improvement of the
classifiers success rate. Let mp ∈ {0, 1, . . . ,m} be the number
of grasped objects that satisfy (2) for a given classifier. If a
classifier is sufficiently trained such that mp = m, condition
(2) will be satisfied for all objects. Hence, the total success
rate would converge to 100% with the increase of iterations.
However, when mp < m, condition (2) is satisfied only for
the mp objects. Consequently, the classification success rate
will increase only for these objects while declining for the
remaining m − mp ones. This means that the success rate
upper limit for a certain classifier is

ξ =
mp

m
× 100%. (7)

The convergence rate depends on the quality of the classifier,
that is, on the accuracy P (l = i|Oi) and prediction certainty
E(pmax|l = i,Oi), for all i.

The proper amount of iterations to reach some level of
accuracy or certainty is not known beforehand. Hence, when
required to acquire a classification in a short period of time,
we cannot set the termination criterion to some arbitrary
number of iterations. Therefore, Algorithm 1 sets a termination
criterion when reaching some certainty above a threshold λ.
Alternatively, classification can be done without a termination
criterion for a long time horizon with continuous certainty
improvement. The collaborative robot, however, will need to
identify task completion by other means. These will be shown
and analyzed through experiments in the next section.

IV. EXPERIMENTS AND ANALYSIS

In this section, we test and analyse the proposed FMG
device and classification method over a set of objects. We have
picked five everyday objects shown in Figure 3 including a
bottle, a mug, a screwdriver, scissors and a plate. A training set
is acquired by recording N = 40 episodes for each object with
a single participant. The participant grasped the objects in a
task-based pose (e.g., by the handle of the screwdriver) similar
to the taxonomy described in [31]. In addition, the FMG
device is taken off and re-positioned between the episodes.
While doing so, the object is also put down and picked
up again in a task-based grasp with some variations. It is
important to note that the data is recorded while the arm is
moving through various configurations to increase variance
and include different grasping postures. For each episode and
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object, a batch of M =10,000 data points is recorded and
labeled. All data is pre-processed as described in Section III-B
with w = 100, resulting in dimension 30 (combining mean
and standard deviation of an n = 15 dimensional measure-
ment). 10% of the data was dedicated for testing and hyper-
parameters optimization, and not included in the training.
Similarly, we recorded and pre-processed five episodes for
each object to form a validation set yielding 4,950 samples
for each object and 24,750 in total. We use the validation data
to test classification success rate in a standard fashion over all
tests. The validation data was completely decoupled from the
training and testing phases. While we perform validation tests
off-line, data is taken sequentially as recorded as if done in
real-time.

Fig. 3. Five objects used in the experiments and their typical grasps.
From left to right: bottle, mug, screwdriver, scissors and a plate.

A. Model evaluation

Using the training data, we have optimized a feed-forward
NN classifier. The resulting NN has two hidden layers of 398
neurons each and a Rectified Linear Unit (ReLU) activation. A
dropout of 50% and an L2 regularizer (factor 10−5) were in-
cluded to control apparent overfitting. Additionally, the ADAM
optimizer was used with a sparse categorical cross-entropy loss
function. The network was trained with the back-propagation
algorithm. Furthermore, we have conducted a comparison
to other common classifiers, including: Nearest-Neighbors,
Naive Bayes, Support Vector Machines (SVM) with a linear
kernel, Random Forests, Decision Trees, Adaptive Boosting
(AdaBoost) and Linear Discriminant Analysis (LDA) [32].

Table I reports the classification success rate for these
classifiers over the validation data. We note that these are
the rates for one-time calls without IC, i.e., classification
according to one sample as input. The table also shows the
importance of the pre-processing step (no Mean filter and
standard deviation inclusion). The pre-processing step slightly
improves in most cases with a significant increase for the
NN classifier. All tests, however, include signal substraction
by the initial episode relaxation measurements to compensate
varying tightening forces. Without filtering the training data,
the most accurate NN with input dimension of 15 reach
success rate of 63.01%. When applying the Mean filter, the
success rate significantly increases to 88%; and 91.17% when
also including standard deviation. The results indicate that
both mean and standard deviation values embed valuable data,
where the mean values are of greater importance for the
NN performance. Overall, it is clear that the NN classifier
outperforms and, therefore, further used in our experiments.

Figure 4a presents the confusion matrix for the NN clas-
sifier, denoted as classifier O, with a total success rate of
91.17%. The most erroneous classification is for the scissors
in which some grasp variations can be confused with a plate

TABLE I
SUCCESS RATE COMPARISON FOR DIFFERENT CLASSIFIERS

Classification success rate
Classifier w/o pre-process w/ pre-process
Nearest Neighbors 75.19% 83.68%
Naive Bayes 64.41% 62.11%
Linear SVM 75.52% 80.86%
Random Forests 70.90% 63.29%
Neural-Network 63.01% 91.17%
Decision Trees 60.95% 63.59%
AdaBoost 72.38% 73.39%
LDA 73.68% 78.99%

or a screwdriver. This motivates the observation of multiple
signals through time to increase certainty and success rate.

(a) (b)

Fig. 4. (a) Confusion matrix for the Neural-Network classifier (O)
with a total success rate of 91.17%. (b) Confusion matrix using IC
with classifier O for λ = 0.99. The total classification success rate
is 97.5% with 1.18 average number of iterations.

In the next analysis, we wish to observe the robustness
property with regards to the number of recorded episodes.
Recall that each episode contains 10,000 recorded signals and
the FMG device is removed and re-positioned before each
episode. In order to observe the success rate with regards to
the number of episodes N , the NN classifier was repeatedly
trained over 10 trials for each given N = 1, ..., 40 while
sampling different episodes from the dataset in each trial.
Results can be seen in Figure 5. The classification success
rate improves with the increase of episodes, reaching approxi-
mately 90% success rate with more than 30 episodes. Also, the
standard deviation over the 10 trials decreases as the number
of episodes rise. This behaviour confirms the main issue
dealing with data originating from body-muscle related source;
the placement and replacement after every episode creates
considerable variations to the data. As expected, additional
episodes in the training data results in a more robust classifier
to variations in device placements and tightening forces.

B. Sensor placement analysis and Feature Importance

As discussed in Section I, previous work have positioned
FSR sensors either on the lower or upper forearm. We now in-
vestigate the contribution of each sensor location to the success
rate of the classification. Hence, we compare between various
configurations of FMG measurements: an upper forearm band
(UF), a lower forearm band with one row of sensors (LF-1),
a lower forearm band with two rows of sensors (LF-2) and
using all sensors in the FMG device. For each configuration,
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Fig. 5. Classification success rate acquired with regards to the number
of episodes recorded. The results show maximum and average values
for 10 training attempts while sampling different episodes in each.

we optimized the NN hyper-parameters. Classification success
rate is summarized in Table II. We see that sensors on the
lower forearm contribute the most valuable information while
sensors on the upper forearm by themselves are not sufficient.

TABLE II
CLASSIFICATION SUCCESS RATE WITH REGARDS TO DIFFERENT

PLACEMENTS OF FMG SENSORS

UF LF-1 LF-2 All (O)
Num. of sensors 6 5 9 15
Success rate 57.20% 75.13% 82.80% 91.17%

To achieve better understanding of the FSR sensors effect
on the model’s performance, we observe the impact of each
sensor on predictions. Permutation feature importance is a
common method to quantify the contribution of each feature
in an NN [33]. This is done by measuring the increase in
the prediction error after permuting the values of each single
feature separately, which breaks the relationship between the
feature and the true label. We use classifier O and randomly
permute the validation data, a single feature each time. The
importance score of feature i is the error ei relative to the
non-permuted model. In other words, the score is defined
as the decline in accuracy resulting from the permutation
of a sensor’s values. The score is computed according to
ei = q−qi

q × 100%, where q is the success rate of the non-
permuted model and qi is the success rate when feature i is
permuted. The results of feature importance evaluation over
30 repetitions are shown in Table III and illustrated in Figure
6 along with sensor locations. The relative accuracies indicate
a relatively strong dependence on the lower forearm sensors
and correlate to the results in Table II. The above feature
importance correlates with the layout of the forearm muscles.
The most significant sensors, 8 and 14, lay on top of the flexor
carpi radialis and flexor digitorum superficialis, which have an
important role in operating the wrist and fingers. While some
sensors are more important than others, the results show that
all sensors along the forearm contribute to an accurate and
robust classification.

C. Iterative classification analysis

The results of Section IV-A show the ability to train a
classifier with relatively high success rate. However, it may be
possible that a model is not accurate enough due to insufficient
data or non-optimal NN hyper-parameters. Hence, we now

Fig. 6. Illustration of the sensor locations and importance score computed
with the permutation feature importance method.

TABLE III
IMPORTANCE SCORE FOR THE SENSOR ON THE FMG DEVICE

Sensor Importance Sensor Importance Sensor Importance
index score index score index score

1 8.23% 6 6.90% 11 11.47%
2 6.58% 7 13.62% 12 5.33%
3 10.67% 8 25.50% 13 12.21%
4 3.78% 9 16.50% 14 20.46%
5 5.52% 10 13.16% 15 7.89%

analyse the proposed IC algorithm described in Section III-C
(Algorithm 1) aimed to raise the certainty of the output given
by a classifier. We first apply the algorithm to classifier O.
When exerting IC with λ = 0.99, the total success rate
increases to 97.5% with 1.18 average number of iterations.
Figure 4b shows the confusion matrix of the iterated classi-
fier. Adding more samples increases certainty and, therefore,
success rate. Specifically, significant improvement is seen for
the scissors and screwdriver when comparing to Figure 4a.
The above results show that IC along with a sufficiently good
classifier can exhibit accurate and robust classifications even
after the re-positioning of the FMG device.

We now explore the use of the iterative algorithm for
trained classifiers that initially achieved lower success rate.
Four classifiers were chosen and their confusion matrices are
seen in Figure 7. Classifiers A and B were trained with only
4 and 16 episodes, and reached success rate of 76.88% and
84.77%, respectively (confusion matrices are seen in Figures
7a and 7b). Another two classifiers, C and D (Figures 7c and
7d), that use the entire training set (40 episodes) but with
non-optimal hyper-parameters, reach success rates of 50.10%
and 60.12%, respectively. We note that the confusion matrices
are an approximation of P (l = j|Oi) for i, j ∈ {1, 2, 3, 4, 5}
where the diagonal elements approximate P (l = i|Oi). Hence,
classifiers C and D do not satisfy (2).

Table IV presents the success rate improvement when apply-
ing IC with λ = 0.99 over the validation data. The results for
classifiers A and B clearly show that a classifier can be trained
with less episodes (i.e., smaller sized training set) and, achieve
high and robust accuracy with a low number of iterations. The
success rates for classifiers C and D show limited improvement
while the number of iterations is relatively high. This is
the result of the low initial accuracy of the classifiers and
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TABLE IV
RESULTS OF IC WITH DIFFERENT NN CLASSIFIERS (λ = 0.99)

Classifier A B C D O
Initial success rate (%) 76.88 84.77 50.10 60.12 91.17
Success rate w/ IC (%) 87.15 92.39 58.71 69.13 97.5
Difference (%) 10.27 7.62 8.61 9.01 6.33
Avg. iterations 1.31 1.17 2.06 2.04 1.18

inability to satisfy condition (2). With FA, the success rate is
98.1% with 1.16 average number of iterations for classifier O,
providing only marginal improvement. On the other hand, FA
for classifiers A-D failed to converge with a high number of
iterations for many trials making the approach infeasible.

We next analyze the performance of the algorithm over
a long horizon when removing the λ termination criterion.
Figure 8 shows the success rate behavior with respect to the
number of iterations. Classifiers O, A and B (represented by
Figures 4a, 7a and 7b) show satisfaction of condition (2).
Consequently, Figure 8 shows continuous success rate increase
toward converging to a common upper limit of ξ = 100%
as expected from (7). Classifier O converged to 100% rel-
atively fast while the other two require more iterations due
to their lower success rate for some objects. Nevertheless, the
algorithm contributes significant improvement compared to the
initial results.

As can be seen in Figures 7c and 7d, classifiers C and
D share a common property where they both have exactly
one object that does not satisfy condition (2), i.e., mp = 4.
Therefore and according to (7), they are both expected to
exhibit convergence to an upper limit of ξ = 80% success
rate. Figure 8 indeed shows moderate increase in success rate
for the two classifiers toward 80%. Additional trials show that
they reach a success rate of approximately 76% after 1,000
iterations slowly approaching their upper bound.

(a) (b)

(c) (d)

Fig. 7. Confusion matrices for lower success rate classifiers. Classi-
fiers (a) A, (b) B, (c) C and (d) D have a total success rate of 76.88%,
84.77%, 50.10% and 60.12%, respectively.

Fig. 8. The classification success rate with regards to the number of
iterations for classifiers O, A, B, C and D.

Finally, we report the computational time required to clas-
sify an object within hand. We have experimented on an
Intel-Core i7-9700 Ubuntu machine with 16GB of RAM. The
average computation time over 5,000 trials when λ = 0.99 is
24 milliseconds. Alternatively, if the λ termination criterion is
not used and the algorithm keeps improving the prediction
certainty, iteration frequency reaches 53.5Hz. These results
show that accurate classification can be done very fast and
in real-time.

D. Sensor failure

When a sensor in the FMG device fails, a well trained
classifier can lose its accuracy. We now test the use of IC
with an already trained classifier when various sensors fail.
We virtually fail a sensor by setting its values in the validation
set to zero. We note that failure can occur with other non-zero
values or increased noise, leading to different success rates.
Table V shows the results of several different sensors that fail
individually with and without using IC. Indices of the sensors
can be viewed in Figure 6. We note that these results do not
match the general failure importance values (Table III) as they
only reflect a special case of setting the failed value to zero.
Failure of some sensors lead to significant loss of accuracy.
The loss magnitude depends on the impact of the sensor on
the classification success rate for specific objects and on the
respective feature importance. IC, in such case, can provide
valuable improvement while not enough in some cases.

TABLE V
RESULTS OF IC WITH DIFFERENT FAULTY SENSORS (λ = 0.99)

Sensor index 3 4 8 9 14
Initial success rate (%) 58.17 86.23 78.37 78.11 62.77
Success rate w/ IC (%) 63.22 93.80 89.72 88.03 70.64
Difference (%) 5.05 7.57 11.35 9.92 7.87
Avg. iterations 1.2 1.17 1.22 1.22 1.25

V. CONCLUSIONS

We have presented the problem of classifying an object
in hand using simple FMG measurements accurately and
robustly. We have shown the use of 15 FSR sensors on a
low-cost FMG device worn on the forearm. Measurements
from the sensors are recorded during the handling of various
objects while removing and replacing the device. The data is
used to train a NN classifier that exhibited high classification
success rate. We further proposed an iterative classification
algorithm to augment the classification. The IC has shown
to significantly improve certainty of predictions by sampling
additional signals. Furthermore, success rate is improved even
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for less accurate classifiers. Hence, a single user can train
a robust and relatively accurate classifier quickly. In addition,
we have performed an analysis to understand the key locations
for FSR sensors. Our proposed method has shown a robot’s
ability to reason about the object in hand without verbal
communication or visual feedback. The FMG device provides
fast and robust classification of grasped objects that imply
about the intended task of the human. The information about
the object will be part of the decision making for a task planner
to take assistive actions.

Future work could focus on increasing the resolution of
the FSR sensors and reasoning about the pose and weight of
an object in hand. In addition, more sensors can be added
along the arm to acquire additional information about its
pose and to predict future trajectory. We note that some
objects with similar geometry and a task-based grasp (e.g.,
a screwdriver and a spatula) cannot be distinguished by solely
observing finger poses. In such case, future work may consider
the observation of FMG measurements during the task over
time or add context information. A global classifier or model
transfer to a new user are interesting topics to further be
explored.
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