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Motion Planning of Fully-actuated Closed
Kinematic Chains with Revolute Joints: A
Comparative Analysis

Avishai Sintov, Andy Borum, and Timothy Bretl

Abstract—This paper provides a comparative analysis of com-
mon strategies for sampling-based motion planning of fully-
actuated closed kinematic chains with revolute joints. Three
strategies are reviewed: singularity sampling, swapping between
possible passive chains while using the active-passive chains
kinematic approach and using Newton-Raphson projections. The
strategies are compared using analytical and empirical results.
Various measures, such as sampling time and visibility, are used
to analyze the strategies in several dual-arm planning problems
using the three different planning algorithms. This comparative
analysis provides insight into the strengths and weaknesses of
each sampling strategy. Results indicate that the kinematic-
based passive chains swapping strategy is more preferable in
environments with obstacles but harder to implement for various
robotic arms.

Index Terms—Manipulation Planning, Dual Arm Manipulation

I. INTRODUCTION

N robotics, systems of closed kinematic chains (CKC)

appear in many applications such as dual arm manipulation
[1], gait [2], grasping, and multiple mobile robots manipu-
lating an object [3]. The motion planning problem for CKC
systems is to find a path from start to goal configurations
that satisfies joint limits, is collision-free, and satisfies a
set of closure constraints. Finding a path that satisfies the
closure constraints is considered a hard problem due to the
low dimensionality of the constraint manifold in the ambient
configuration space [4]. In addition, explicit descriptions of
this manifold are usually not available. Thus, the probability of
sampling a point that satisfies the closure constraint is null [5].
Consequently, sampling-based approaches excelling in high-
dimensional problems [6] cannot be directly applied to such
problems and must embrace additional methods to ensure a
feasible path.

In the context of sampling-based motion planning, the
common approach for sampling a configuration that satisfies
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the closure constraint is through projection [7]. In this way,
a random configuration in the ambient space is projected
onto the constraint surface. The major challenge, however,
is to enable geodesic traverse across the manifold between
projected configurations (i.e., enable local-connections). A
projection-based local planning approach deforms a straight
line connecting two configurations onto the manifold [8], [9].
Recent work improved this simple projection approach by
proposing tangent-space based strategies [10]. The Tangent-
Bundle-RRT (TB-RRT) [11] expands a tree over overlapping
tangent bundles approximating the manifold. By doing so, the
planning is able to generate samples close to the manifold
while deferring projections until necessary. Similarly, the
AtlasRRT [12] incrementally constructs a set of minimally
overlapping tangent spaces (atlas) on the manifold. A tree
is expanded by sampling new points on the tangent spaces
followed by projection. However, in this paper we wish to
focus on projection-based planning methods as these are
the most commonly used and straight-forward to implement
approaches.

Projection methods, which are also used for geodesic local-
connection, are commonly divided into two catagories, nu-
merical (or optimization) -based [7], [13] and analytical (or
inverse-kinematics) -based [14], [15]. One might assume that
analytical methods perform better than numerical methods
due to the additional computational cost. In this paper, we
wish to challenge this assumption and determine which is
the favorable method for planning with fully- actuated CKC.
Therefore, the main objective of this paper is to review several
methods within the context of sampling-based planning. This
review provides insight into the strengths and weaknesses of
each strategy and may assist in future choices for motion
planning of CKC. Thus, we identify prominent projection-
based strategies for the motion planning of CKC, and conduct
a comparative analysis. Some of the strategies have been
known in the professional community, but, to the best of our
knowledge, never been addressed properly in literature. We
discuss these methods here and contribute some additional
insights.

It is worth mentioning early work of sampling-based plan-
ning for CKC. Seminal work in [5] used an optimization-based
approach applied to the Probabilistic Roadmap (PRM) and
later extended to the Rapidly-exploring Random Tree (RRT)
[13]. They used randomized gradient descent to minimize
closure residual functions and converge samples to the surface.
Later in [16], relaxation of the constraint was introduced by
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reformulating the equality constraint to an inequality with a
small tolerance. In [17], the closure constraint was relaxed
by adding joint compliance yielding a feasible sampling vol-
ume over the manifold. These relaxation approaches enable
direct sampling in the relaxed volume. Thus, projection is
not required. However, these approaches suffer from high
planning time and may cause implementation problems such
as damaging forces.

The number of samples and the cost of checking a local-
connection are obviously important measures in the perfor-
mance of a planner. These measures are determined by the
chosen method of projection. Equally important is the prob-
ability of two configurations being connected with a single
local-connection. This probability, derived from the notion
of visibility [18], is also determined by the projection and
local-connection strategies and is critical to the performance.
For some of the reviewed methods, we provide an upper
limit for this probability. These measures are the basis of our
comparative analysis for closed kinematic chains problems.

II. PRELIMINARIES

In this section we define the planning problem for closed
kinematic chains and review some relevant fundamentals in
constrained sampling-based planning.

A. Problem definition

Let R denote an n-dimensional CKC with n — 1 rigid links
connected by n revolute and actuated joints in the Euclidean
space R?, where d = 2 or d = 3 in the planar and spatial case,
respectively. Further, denote C as the configuration space of
‘R formed by its joint space product. The kinematic closure
constraint can generally be expressed as a system of n. non-
linear equations C(¢) = 0 where n. = 3 or n, = 6 for planar
or spatial problems, respectively, and ¢ € C. Hence, the set of
all configurations of R satisfying the closure constraint is the
subset

Ca={p€C:C(¢) =0} (1)

Further, let C, C C be a restricted region due to obstacles
and joint limits, and let the free configuration space of R be
Ciree =C \ Cp. Therefore, the feasible set C,, defined as

Co:{¢ec:¢ecfreemccl}7 (2)

is the set of configurations that satisfy the closed kinematic
chain constraint, satisfy joint limits and are collision-free.
When referring to a real-life example of two manipulators
holding an object (as in Figure 2), we assume that the object
and grippers form a rigid body, thus, forming one closed chain.

The motion planning problem is as follows. Given start and
goal configurations ¢ € C, and ¢, € C, of the system R,
find a continuous path « : [0,1] — C, such that «(0) = ¢,
and (1) = ¢,.

B. Projection methods

Constraints such as (1) reduce the configuration space to a
lower-dimensional subset in the ambient space [4]. Thus, the
probability of sampling a valid configuration on the closure

constraint surface tends to be zero. The common approach is to
sample a random configuration in the ambient space and then
project it onto the constraint surface [8]. The two prominent
approaches for projection are the active and passive chains
(APC) method and the Newton-Raphson (NR) method, and
are presented in this section.

1) Active and passive chains: A well known approach for
generating a random configuration that satisfies the closed
chain constraint is breaking R into two open subchains [14]:
the active chain R, and the passive chains R,. The active
chain configuration is sampled uniformly and then inverse
kinematics (IK) is used to enforce, if possible, the closure
constraint on the remaining passive chain. It is important to
note that there are no real passive joints in the chain and the
declaration of a set of joints as a passive chain is solely per-
formed for configuration calculations and planning purposes.
However, this approach introduces artificial singularities as
later discussed. Although not exactly a projection operation,
we still refer to APC as such as commonly done in the
literature [10]. Since the configuration of R, is randomly
sampled, its dimension results solely from restrictions on
the passive chains. Most importantly, the passive chain must
be non-redundant to enable closed-form IK solutions [4]. In
addition, it is preferable that the passive chain have enough
joints in a formation such that its tip is fully actuated to any
position and orientation in the workspace. A passive chain
where the number of joints is smaller than the number of
degrees-of-freedom (DOF) of the end-effector could signifi-
cantly increase the projection time of a valid configuration and
can be infeasible for motion planning. Normally, the passive
chains of spatial systems would be chosen to have an elbow-
wrist formation [19] (six DOF) ensuring full actuation.

2) Newton-Raphson projection: In the Newton-Raphson
(NR) approach described in [9], a configuration in the ambient
space is numerically projected onto the constraint surface.
Starting from a randomly sampled configuration, the Newton-
Raphson method is used to reduce the residual of the constraint
error ||C'(4)||. At each iteration, the pseudo-inverse of the
Jacobian matrix of the constraint is calculated and used to
take a step in the configuration space to reduce the constraint
residual. This repeats until the residual of the constraint is
below some tolerance or the number of iterations reaches an
upper bound. Backtracking line search can be used to expedite
convergence by calculating the maximum step size.

A preliminary experimental comparison of the two pro-
jection methods with regards to the projection distance was
performed. 500,000 random configurations were projected for
two spatial robotic arms of six DOF each (as seen in Figure 2b)
holding an object, without joint limits and collision avoidance.
The results show that APC runtime is three to six times faster
than NR and, as expected, does not depend on the projection
distance. Using NR, the number of iterations required for
convergence increases with projection distance. Although APC
has better runtime, not all selections of active chains can be
be closed with the IK of the passive chain. In this experiment,
the APC success rate is 7.92% compared to 100% for NR.
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C. Local-connection

A straight line connecting two valid configurations is un-
likely to be contained in C. Thus, a local connection that
traverse the surface of the constraint must be found. Projecting
interpolated points from a path connecting two configurations
onto the manifold may raise continuity problems. Thus, the
Recursive Bi-Section (RBS) technique proposed in [9] pro-
vides an efficient way to discretely deform a straight line onto
Cc;. The mid-point of the two configurations is first projected
onto C.; and checked to ensure it also lies in C,. If the mid-
point is valid, the algorithm is repeated on each of the formed
segments until a desired resolution is met or failure to project
on C, occurs. This method was later extended to trajectory
optimization of constrained systems by the interpolation of
cubic Hermite curves and time-parameterization along the
projected paths [20]. In [8], expansion is done in a sewing-
like operation where a small step is taken toward a random
configuration followed by projection.

D. Visibility

We now define the notion of visibility. Let the function
valid_edge(¢1,¢2) return true if the projection of a
straight line edge connecting ¢; to ¢o using, for example,
the RBS technique, is valid. The notion of visibility is defined
as follows.

Definition 1. [I8] The visibility set of configuration ¢ € C,
is the set

V(p) ={¢' € C,: valid_edge(p,¢’) = true}. (3)

The visibility of a configuration is partially defined by the
planning strategy and common ones are described next.

III. METHODS

In this section, we present three strategies that can be used
in standard sampling-based planners. One of the methods is
well known in the literature and will therefore be presented
here in brief. However, the first two methods have been known
in the professional community to some extent but have never
been presented and analyzed properly in literature. Therefore,
we will provide a broader discussion on these methods and
present some novel insights.

A. Random Singularity Sampling (RSS)

Using the APC method, we can analytically generate a
valid configuration with a relatively low computational cost.
However, this method prevents motion between subsets of
the constraint surface defined by different IK solutions. In
other words, the passive chain is bounded to remain within
the same IK solution and cannot pass through singular sub-
sets separating different IK solutions. In some sense, the
inability to cross singularities may be seen as an advantage
when considering the problems they may cause. However,
the effective workspace of the CKC is dramatically reduced.
One approach to switch between different IK solutions in
dual-arm manipulation is regrasping [21]. This of course

(2%

Ay

A

1 3 5 Pl

(©) (d)

Fig. 1. (a) Four bar linkage (with four actuators) and a local connection
attempt from ¢1 to ¢2 where (b) 1 is the active chain, (c) a singular
configuration is used and, (d) ¢4 is the active chains. A; and B; (i = 1, 2) are
singular configurations when ¢1 and ¢4 are the active chains, respectively.

requires breaking contact with one arm. In this section and the
following one, we discuss two common approaches to enable
a CKC to continuously pass between IK solutions while using
APC.

For a better understanding of the singularity problem, let
us consider a lower dimensional example. Consider the four
bar linkage seen in Figure la with four actuators at joints
(¢1, .- p4). Figure 1b illustrates a projection of the config-
uration space on the @14 plane. Points A; and A are the
singular points when ¢ is selected as the active chain and
joints (2, @3, ) are the passive chain. That is, when
is set, the passive chain is imposed and defined to satisfy
the closed kinematic chain constraint. The upper and lower
curves connecting A; to As correspond to the two possible
IK solutions for each choice of (1, i.e., elbow up or elbow
down of joint 3. In order to be able to move, all actuators
need to move in a coordinated manner while satisfying the
closure constraint. Now, assume we attempt to connect the
configurations ¢; and ¢». A local connection cannot be valid
while ¢4 is the active chain due to the singularity in between
(A1 or As). The projection of points interpolated along the
p1-axis using IK will not connect the two configurations as
seen in Figure 1b and the connection is thus not feasible.

Denote 1), as a subvector of ¢ € C corresponding to joint
angles of R,,. When V, C'is not full rank, i.e. det(V,,C) =
0, the configuration is considered singular resulting in either
infinite or no solutions. This type of singularity is termed
actuator singularity as defined in [22]. These singularities are
fictitious since R,, is not physically passive as mentioned in
Section II-A. However, they impose a planning problem as
described and demonstrated above. Note that V, C' is always
square since the dimension of C' is 3 or 6, and the dimension
of 1, is 3 or 6 for a planar or spatial CKC, respectively.

Denote D C C. as the subset corresponding to singular
configurations of R,. The set C, = C.\D is the set of closure
configurations where Vy, C' is full rank and is a smooth
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manifold of dimension n — n. [23]. A fully actuated robotic
manipulator has £ IK solutions for a given end-effector pose.
For example, a 6R spatial manipulator may have up to 16
IK solutions [24]. If the passive chain R, has £ possible IK
solutions, then C, is comprised of £ connected components,
denoted by M C C, (k = 1,...,£), which are separated by
singular configurations. The notion of a connected component
is somewhat similar to the self-motion manifold defined and
thoroughly analyzed in [25].

A common approach to overcome this singularity problem
and cross between different connected components is the
explicit treatment of singular configurations. That is, singu-
lar configurations are sampled and used as bridges between
connected components (Figure 1c). The singularity problem
and this approach were first addressed in [15] where com-
ponents in a probabilistic roadmap are connected through
singular configurations. We extend this notion to single-query
planners by maintaining some bias toward singular subsets in
the configuration space. In the Random Singularity Sampling
(RSS), we sample singular configurations with probability ~y as
target nodes in the tree’s growth and enable expansion between
connected components. Since these singularities are artificial
and the robot is fully-actuated, the robot can later cross them.

When analyzing the RSS in terms of visibility, we observe
one passive chain with £ possible IK solutions. Given a
configuration ¢y € My, the probability of ¢ € C.; to also be
in My is p = p(My)/u(Ce) where p(Q) is the Hausdorff
measure of a lower-dimensional subset @ C C. If we assume
that f(My) = ¢u(Ca) for all k = 1,...,&, then we can say
that p = £~1. Therefore, we can set an upper bound for the
measure of the visibility set by

p(V(9)) < u(My) = p(Car)p- “4)

The core property of RSS is in the extended visibility of the
singular configurations, where all adjacent connected compo-
nents are visible. We note that this bound for the visibility
is very loose and will be much lower in practical systems.
Joint limits, self collisions and obstacles could dramatically
obstruct visibility. Nevertheless, this bound is used to motivate
the increase of visibility in the following approach.

B. Passive Chains Swap (PCS)

A different approach to address the singularity problem
described in Section III-A is to swap between different passive
chains available in the CKC. Referring again to the example of
Figure 1, points A; and A, are the singularities when (; is the
active chain (Figure 1b), and points B; and Bs are the singular
configurations when ¢, is the active chain (Figure 1d). A
possible way to connect ¢; and ¢ would be to switch the role
of the active chain and perform the local connection while 4
is the active chain. In that case, there is no passing through a
singularity point (Figure 1d). The approach for connecting two
points ¢ and ¢4 would therefore be to identify the active chain
producing a motion free of singularities, if available. Then,
interpolate points along the straight line connecting ¢, and ¢o,
and compute for each the correct IK solution corresponding to
the current active chain and common to both. This approach,

termed the Passive Chains Swap (PCS), is known to be used by
the professional community but, to the best of our knowledge,
has never been addressed in literature.

From here on, let the superscript with index in paren-
theses (-)(*) notate the afﬁhatlon to passive chain number
,m. Since Rp and R(j are in different locations
along the CKC, the singularities of R with RI(,) as the passive
chain may be different than when R,(f ) act as the passive
chain, or mathematically, D) = D). This was demonstrated
in the example in Figure 1. When Rgf) is the passive chain,
the unlon of the connected components is the configuration
space C of the chain satisfying the closure constraints and
Ré) is not in singularity. Now, connected components in Cy' %
overlap connected components in Cq ) while including singular
subsets in D). When swappmg the passwe chain role, we
alternate betweens motions in C Y to Cao 2 . Thus, the system
is able to cross configurations that were previously singular,
and local connections are more likely to be feasible between
neighboring configurations. The idea is, therefore, to sample
configurations in the ambient space and project them onto
C. using different IK solutions of different passive chains.
Then, local connection is acquired, if possible, between two
configurations with the passive chain that position them in the
same connected component.

In terms of visibility, a configuration ¢ € C.; has, at most,
visibility to all connected components in which it lies. By that,
the set V,,,(¢) is the visibility set of ¢ when m passive chains
are observed and is given by

v=1,.

m

o) YmY 5)

where k; is the corresponding IK solution index of passive
chain R,(f). When observing multiple passive chains, we must
make a distinction between dependent and independent passive
chains. Two passive chains are said to be dependent if they
partially overlap and their common chain has more than one
IK solution. For example, consider a chain formed by a
sequence of elbow-wrist-elbow formation [19]. In this case,
one passive chain can be the elbow-wrist chain and the other
would be the wrist-elbow. Each have eight IK solutions. Both
share the wrist chain which is known to have more than one
IK solution. Thus, they are dependent. This dependency is
reflected when two configurations do not share the same IK
solution for one passive chain. Consequently, this will reduce
the probability for being in the same connected component
for the second passive chain. In this example, setting the wrist
for one passive chain determines wrist up or down resulting in
the other passive chain having only four possible IK solutions.
Nevertheless, if two passive chains share two joints or less (or
do not share any joint), the common chain cannot have more
than one solution and they would be independent. Therefore,
a planar chain will never have dependent passive chains.
When considering m independent passive chains each hav-
ing & (k =1, ...,m) possible IK solutions, the probability for
¢2 not to be in a common connected component with ¢y is
m
[T —=pw), 6)

k=1

P, =
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where pr, = & !, The expression for P, holds for any CKC
with a set of m independent passive chains but does not
include dependent passive chains. In order to find a better
value for P,,, with dependent passive chains, any given CKC
must be analysed individually. The general approach would
be as follows. Let RY” and RS’ be two dependent passive
chains of R with & and &; IK solutions, respectively. As
mentioned, the probability of two configurations not to be in
the connected component corresponding to R,(,’) is 1 —p;. If
two configurations are not in the same connected component
corresponding to Rg), the probability for them to be visible
through Ré‘” decreases and is given by conditional probability
to be 1

- -1

p=0-6 )(gj_fij)’ @
where ;; is the number of IK solutions canceled by the
common (overlapping) chain. This is because, when setting
a configuration for R 2), some IK solutions for R;,j ) become
impossible. Consequently, (6) is now extended to consider both
dependent and independent passive chains. The probability for
two configurations not to be in common connected compo-
nents of m passive chains is

mi WLQ/Q
Pn=1J0-p) [T =50, (8)
k=1 k=1

where m; and my are the number of independent and depen-
dent passive chains, respectively, such that m = mj + mao.
Therefore, we can finally state that the visibility set of a
configuration ¢ € C,; covers up to a fraction P, = 1 — P,, of
Ccl9 i.e.,

1(Vim(9)) < Pop(Cer). €))

Expressions (8)-(9) enable us to analytically find an upper
bound for the measure of the visibility set with regards to the
number of observed passive chains. This bound is also very
loose and may be significantly reduced in the presence of joint
limits and obstacles. Nevertheless, expressions (8)-(9) provide
a firm motivation for increasing the number of passive chains
used, especially when joint limits and collision constraints are
imposed. Increasing the number of passive chains observed
directly increases the visibility, i.e., increases the probability
of two configurations to be connected with a single local-
connection.

From the planar example to be presented in the experi-
mental section, it is clear that the visibility increases and the
runtime decreases with the addition of more passive chains.
Adding more passive chains in 2D systems is straightforward.
However, for a practical 3D case of dual-arm manipulation,
including more passive chains in addition to the immediate
ones (the arms) is considered a hard problem. Closed form IK
solutions are easy to derive in special cases, such as when three
consecutive axes intersect. For instance, off-the-shelf robots of
six revolute joints are built such that closed form IK are easily
computed. In contrast, IK solutions are hard to obtain or do
not exist for arbitrary kinematic chains [26]. Analysis of the
spatial case along with extended results will be presented in
the experimental section.

C. Newton-Raphson (NR) projection

The use of NR projection in standard sampling-based plan-
ners has been widely used [7], [8]. Samples and interpo-
lated points on local-connections are projected using NR and
checked to satisfy all constraints. This numerical projection
has been shown to be relatively expensive. Nonetheless, al-
though analytic characterizations of visibility in the context of
NR are currently unavailable, empirical results to be presented
in the experimental section show high probability of two
configurations to be connected.

IV. ANALYSIS AND EXPERIMENTAL RESULTS

This section presents an empirical performance analysis
of the discussed methods for an actual robotic system. The
experiments were implemented in C++ with the Open Motion
Planning Library (OMPL) [27] on an Intel-Core 17-6700HQ
Ubuntu machine with 8GB of RAM. Collision checking was
implemented using the Proximity Query Package (PQP) [28].
The open-source code of the various experiments is available
at https://github.com/avishais/CKCplanning.

We tested each method in six different environments. En-
vironment / shown in Figure 2a consists of a 20-dimensional
planner CKC with obstacles and joint limits ([—180°, 180°]).
In the path planning problem of Environment /I, shown in
Figure 2b, two 6-DOF ABB IRB-120 industrial robotic arms
must manipulate a rod in a collision-free path between start
to the goal configurations. Environment /71, shown in Figure
2c, requires the same robots to pass a rod through a narrow
passage. Environments /V and V use two 6-DOF Comau nj-
16 arms. In environment /V seen in Figure 2d, the robots
manipulte a rod through several obstacles. Environment V
is an industrial scene where the robots manipulate a box
using suction cups from a conveyor to the mounting position.
Finally, environment VI presents a multi-loop scenario where
three Comau arms manipulate a ring between two poles.
The grasps of the objects are considered rigid, and thus,
the grasped object is considered part of a link in the chain.
Joint limits were enforced to all industrial arms based on
manufacturer data. In all environments, the defined start and
goal configurations require passing through singular configura-
tions. For each environment, we tested several sampling-based
planners: the Rapidly-exploring Random Trees (RRT) [29], Bi-
Directional RRT (Bi-RRT) and the Single-query Bi-directional
probabilistic roadmap planner with Lazy collision checking
(SBL) [30]. The Bi-RRT with projections is essentially an
implementation of the Constrained Bi-RRT (CBi-RRT) in
[8]. All planners are standard implementations in OMPL. In
addition, the RBS technique was used to efficiently find the
geodesic local connection between two configurations.

A. Experimental results

In this section we present comparative results for planning
with the three discussed methods: RSS, PCS and NR. In the
implementation of RSS, the planning was performed with only
one passive chain. Probability v was profiled and chosen as
0.2 to provide best performance. In all enviroments excluding
I, PCS was implemented with the immediate passive chains
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(a) C )

Fig. 2. The six tested environments: (a) a 20-dimensional planar CKC, two
ABB robots manipulating a rod (b) between three poles and (c) through a
narrow passage, two Comau arms manipulating (d) a rod and (e) a box through
obstacles, and (f) three Comau arms manipulating a ring between poles.

- the arms themselves. Each arm is built in the elbow-wrist
formation in which a closed-form IK solution is commonly
known.

We used the Kinematics and Dynamics Library (KDL)
[31] of the Open Robot Control Software (OROCOS) for
the implementation of NR projections. It solves for the joint
angles using Newton-Raphson for gradient descent minimiza-
tion while the pseudo-inverse of the Jacobian is determined
using Singular Value Decomposition (we note however that
QR decomposition can generally be more efficient). Given
an initial configuration in the ambient space, KDL solves the
IK problem for the entire chain while enforcing the closure
constraint.

In all planners, the maximum distance d from a sampled
configuration in the ambient space to its nearest neighbor [6]
was profiled and chosen to minimize runtime. The optimal
distance d = d, is determined by the visibility, projection
method and cost of local-connection derived from the method
used.

It might be possible that the implementations of these
strategies can be improved with additional individual or com-
mon methods such as sample-biasing and various heuristics.
Nonetheless, we present them as generic as possible such that
the following results provide a fundamental characterization
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Fig. 3. Results for environment /. (Top) The success rate of a local-connection
check with regards to the distance (bins width - 0.3) and, (bottom) runtime
with regards to the number of observed passive chains m when planning with
Bi-RRT.

of the methods. Figure 3 shows local-connection success rates
and planning results for environment / with Bi-RRT, and with
regards to the number of passive chains used. Table I presents
the runtime performance of planning in environments //-VI.
The results show an average planning time for 500 trials using
each of the methods and planners. A dash mark indicates that
a solution could not be found in under 1,000 seconds.

TABLE I
AVERAGE PLANNING TIME (SEC)

RSS PCS NR

RRT 90.86 0.33 0.60

env. II Bi-RRT 7.27 0.22 0.13
SBL 397.29 0.60 0.16

RRT 75.94 291 1.53

env. 111 Bi-RRT | 23.10 1.06 0.92
SBL 648.9 5.48 7.56
RRT - 99.24 75.88
env. IV Bi-RRT 175.5 27.18 38.84
SBL - 14795  234.82

RRT - - -
env. V Bi-RRT 330.6 3.81 11.76
: SBL 587.29 2.61 3.55

RRT - - -

env. VI Bi-RRT | 537.2 3.7 36.63
SBL - 7.16 82.24

B. Analysis and Discussion

The planar results in Figure 3 demonstrate the benefits of
visibility and projection time. As seen, the increase of passive
chains for the PCS increases visibility enough above the NR’s.
In addition, tests show that projection time for the PCS in the
planar case is about 40 times faster than NR projection. Thus,
the increase of visibility combined with faster projection and
local connection make the use of PCS in the planar case more
beneficial.

Referring to the spatial environments, the first row in Table
IT shows experimental results for the visible portion P, of C, in
environment /1. These are the results of sampling 50,000 start
and goal configurations in C, and checking whether a local-
connection is valid. However, a clearer way to understand the
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Fig. 4. The success rate of a local-connection check in environment / with
regards to the distance between the two configurations. This corresponds to
the visibility in the configuration space (bins width - 0.3).

visibility is in Figure 4 presenting the same results for envi-
ronment /I as a function of the distance between the samples.
Thus, it shows the probability of a valid local connection given
two configurations within some distance. PCS and RSS have
a very low visibility primarily because of the low projection
success rate of APC as discussed in Section II-B. On the other
hand, NR has a remarkable visibility in the shorter distances.
Table II also presents additional performance measures for
planning with the Bi-RRT in environment II. Measures for
the other planners and environments are relatively similar.

TABLE II
PERFORMANCE MEASURES FOR PLANNING WITH BI-RRT IN
ENVIRONMENT /1

[[ RSS PCS NR
Py, - 100% 0.85 1.31 23.74
max. distance d, 0.6 1 2.6
avg. number of samples 5,544 532 151
% of failed samples 83.64 2048 16.17
sampling % of runtime 3.03 19.05  27.80
avg. loc.-con. time (msec) 4.97 0.32 1.40
loc.-con. checks per sec 102 1,639 508
loc.-con. % of runtime 50.73  53.82  71.58
avg. number of nodes in trees 476 408 13
avg. number of nodes in path 26 29 7

It is clear that PCS and NR outperform RSS. Thus, we first
begin by analyzing the reasons for which the latter perform
poorly. RSS performs poorly mainly due to low visibility and
the limited ability to cross singular configurations. The upper
limit of the visibility for a configuration with RSS is merely
the connected component it lies in. Thus, crossing to different
connected components relies on the right singular sample and
the distance from its nearest-neighbor. The singularities are
chosen randomly and the distance to the nearest neighbor
cannot be controlled. Due to the low visibility, the trees must
be sufficiently large within a connected component in order
to be close enough to a singular configuration. Only then
is a local connection likely to be feasible. It is important
to note that as the size of the trees increase, the cost of
the nearest-neighbor search increases significantly and takes
a larger portion of the runtime. This has a direct effect on
the performance of RSS. These reasons make the RSS a non-
ideal approach. Presumably, some heuristics such as biased
singularity sampling and smarter projection choices can be
added to speed-up the planning, but these changes are unlikely
to match the PCS and NR performance.

When comparing between the NR and PCS, we pay atten-
tion to two properties: visibility and projection cost. NR is
superior in visibility as seen in Figure 4 but has a relatively
high projection cost. In general, the high visibility enables fast
exploration and connection to the goal. This can be seen in
the results of environment /I where the configuration space
is not so cluttered. However, when the configuration space is
cluttered with more obstacles as in environments /V-VI, the
visibility advantage of NR diminishes. In such case, extensive
exploration with smaller steps is conducted resulting in many
more expensive projections. PCS on the other hand already
moves in smaller steps due to the low visibility but faster.
We note that NR outperforms PCS in all spatial environments
excluding VI when the obstacles are removed. We also note
that the visibility affects the quality of the path in terms of
smoothness. As seen in Table II, NR has the highest visibility,
can move in larger steps and thus, can produce a shorter path
reflected by the number of nodes it consists.

Environment VI is an example of a system with more than
one closed kinematic chain. We note however that the analysis
given in Section III-B is not fully applicable in this case. Here,
for any given active chain arm there are two passive chains.
Thus, a connection between two configurations is only possible
when the IK solution of each passive chain is the same in
both configurations. Nevertheless, we include this experiment
to provide a broader benchmark. NR performs poorly in this
case due to the obstacles and due to the high dimensionality
resulting in significant cost of projections. The projection cost
of PCS on the other hand remains low.

One issue that should also be addressed is the uniformity of
the samples on the constraint manifold. While random samples
in the ambient space are taken uniformly, their projection on
the implicit manifold are not guaranteed to have a uniform
distribution [10]. Tests on all environments have shown almost
the same distribution for both projection methods, APC and
NR, on the manifold. Thus, both would cover the entire mani-
fold with the increase of samples. We should add however that
when projecting a configuration, the distance from the nearest-
neighbor can increase or decrease based on the projection
method. Figure 5 shows the average absolute distance change
between a random configuration and its projection to a valid
neighbor for both methods. NR preserves the distance better
than APC and is more effective in sampling within the feasible
visibility region (seen in Figure 4). This advantage is also
diminished in a cluttered environment.

Adding more passive chains, as seen in the planar example
of environment /, increases the visibility and reduces planning
time. This brings up the question of whether adding more
passive chains, if even possible, can significantly improve the
performance of PCS for the spatial case as well. As seen in
Figure 4, RSS which uses only one fully actuated passive
chain, has an extremely low visibility. The addition of another
fully actuated passive chain in PCS was crucial to overcome
the singularity problem but only nearly doubled the visibility.
Thus, more passive chains would not increase the visibility
significantly. In addition and as stated in Section III, finding
more passive chains with closed-form IK is considered a
hard problem. For example, any passive chain in the system
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Fig. 5. Average absolute distance change between a random configuration
and its projection to a valid neighbor as a function of the distance before
projection, for environment /7 (bins width - 0.46).

of environments /I-IV that includes the rod and the two
adjacent joints has infinite IK solutions, and is therefore
infeasible. Additional passive chains would also be dependent
with limited contribution to visibility. In general, several fully
actuated passive chains, which usually do not exist in actual
systems, would have to be added to improve performance.

In terms of implementation, IK-based methods are hard to
generalize. In both RSS and PCS, the IK of each passive chain
must be explicilty and analytically defined. Implementing
closed-form IK solutions for different passive chains, not
to mention redundant ones, can be quite complex and in
many cases impossible. In addition, singularities are generally
impicitly defined and must be individually identified. This
makes singularity sampling in RSS a difficult task. We also
note that implementation of PCS and RSS is only possible
in chains where the kinematic structure is ear-decomposable
[32]. On the other hand, NR is straightforward to implement
and generalize for any n-dimensional chain.

V. CONCLUSION

An overview and comparative analysis was introduced for
common strategies of sampling-based motion planning with
closed kinematic chains. We have provided an extensive review
for known strategies that were not addressed previously in
literature. Experimental results in several environments gave
the reader a good sense of how each of the strategies perform
given different planners. The above results indicate that PCS
performs at least the same as NR and even better in cluttered
environments. However, implementing closed-form IK solu-
tions in PCS for different arms can be quite complex. On the
other hand, NR is easier to implement and generalize for any
n-dimensional chain. Future work could widen the analysis by
considering other criteria such as forces within the links and
joints, grasp statics, control issues and manipulability.
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