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Real-time Non-visual Shape Estimation and Robotic
Dual-Arm Manipulation Control of an Elastic Wire

Itamar Mishani and Avishai Sintov

Abstract—The dual-arm manipulation of elastic wires has been
a hard problem for many decades. Nevertheless, recent work has
shown that the shape of a wire can be defined by a very simple
representation. Theoretical analysis has stated that simple sensing
of the force and torque at one end of the wire can be used to
determine its shape. In this letter, we experimentally analyze the
developed theoretical foundation. We deploy a dual-arm robotic
system able to accurately manipulate an elastic wire. The system
does not require complex visual perception and is able to reason
about the shape of the wire by solely sensing forces and torques
on one arm. Furthermore, we propose a full framework in which
the mechanical properties of the wire are rapidly approximated
in real-time. Then, a simple control rule based on Force/Torque
feedback is used to manipulate the wire to some goal or track
a planned path. We conduct various experiments on a full-scale
system to analyze pose estimation and control accuracies. Results
validate the benefit of the approach and demonstrate the ability
to accurately manipulate a wire.

Index Terms—Elastic wires, Dual Arm Manipulation, Manip-
ulation Planning.

I. INTRODUCTION

THE manipulation of thin elastic wires has been of in-
terest for centuries [1]. Wire manipulation is considered

a difficult task to operate in industrial environments. The
common approach to manipulate deformable objects is using
two robotic arms [2], [3]. However, in order to efficiently
and safely manipulate wires, one requires sufficiently accurate
models and control schemes. Once achieved, wire manipula-
tion abilities for robots would be practical in many applica-
tions. For instance, cable routing is still operated manually
in automotive production lines [4]. Other applications include
knot tying [5], surgical suturing [6], hot wire carving recently
demonstrated by a robotic system [7] or manipulation of cables
using autonomous aerial vehicles [8].

The configuration space describing the shape of an elastic
wire has infinite dimension. Moreover, a multitude of wire
shapes exists for a single pose of the robot arms holding it
by the tips. These challenges have made the manipulation
planning of a wire a challenging problem. Prior work on path
planning for elastic wires suggest exploring the set of equi-
librium configurations indirectly, by sampling displacements
of grippers and using numerical simulations to approximate
their effect on the wire [9], [10]. Hermansson et al. [11]
relaxed handle constraints along an elastic harness and planned
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Fig. 1. A dual-arm robot manipulating an elastic wire. The shape of the wire
is estimated solely using Force/Torque sensing on one gripper.

a collision-free path for a central grip point. These approaches
use computationally expensive simulation-based methods that
may limit their effectiveness in real-time motion planning.
Another approach simplified the model of a deformed object
by reducing it to a sequence of rigid masses and springs
[12]. Similarly, a soft robot was discretized in order to
compute a collision-free path in a confined space [13]. In these
approaches, the solutions use coarse discretization which do
not scale to high-dimensional cases and, in turn, affect the
quality of the planning. A feasible procedure to derive the
free configuration space of an elastic wire was not yet clear
at the time. Seminal work by Bretl and McCarthy [14] later
showed that the configuration space of the wire, i.e., the set
of all equilibrium configurations, is a six-dimensional smooth
manifold. Such revelation enabled the use of sampling-based
planning algorithms to plan stable and collision-free paths
[15], [16].

Many attempts have been made to estimate and control
the shape of an elastic wire. Borum et al. [17] used fiducial
markers and images to approximate the shape of a planar wire.
The work in [18] demonstrated the estimation of a thin elastic
strip using a force sensor and based on a discretized Kirchhoff
elastic rod model. In [19], a simulated discrete elastic rod
model is fitted on data obtained from camera images. In [20], a
cable is parameterized by a Fourier series while the parameters
are estimated using image segmentation. Using the model,
velocity control is utilized to deform the cable into desired
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shapes. However, visual perception and image segmenting of
thin objects such as a wire in a cluttered environment is
a challenging task. Moreover, relying on continuous visual
feedback limits the performance of various tasks in which
visual uncertainty (e.g., poor lighting or shadows) or occlusion
may occur. This may include manipulating the wire within a
confined space such as a vehicle frame. The work of Takano et
al. [21] uses a Force/Torque sensor to estimate the shape of a
thin strip based on a discrete model. Mechanical properties are
not estimated and assumed to be known. While reducing the
problem to a finite-dimensional space, these approaches are
highly dependent on the resolution of the discretization and
directly proportional to computation time. In addition, these
methods focus mostly on shape estimation and do not provide
an efficient ability to plan and control wire motions.

In this letter, we propose a full framework to identify, plan
and control the motion of an elastic wire using a dual-arm
robot without visual perception. Theoretical analysis in [14]
has shown that the configuration of a wire is, in fact, the force
and torque exerted at one end of the wire. Hence, we utilize
a Force/Torque (F/T) sensor to measure the load exerted on
one gripper by the wire (Figure 1). We explore the sole use
of the load measurement to accurately estimate the shape of
wire. Our framework first estimates the mechanical parameters
of the wire in real-time based only on F/T measurements
and gripper poses. The accuracy of the shape estimation
based only on load sensing is then analyzed over various
wires. Furthermore, we propose a simple and novel control
scheme to reach a desired configuration and track a planned
path. Inaccurate tracking of a planned path may lead to wire
instability and collision with obstacles. During a collision,
the model deviates from the basic assumptions of the model
(i.e., two fixture points) and predictions are not possible.
Hence, accurate tracking of a path in a confined space is
essential. To the best of the author’s knowledge, this is the first
implementation and experimental analysis of the theoretical
foundation developed by Bretl and McCarthy [14] for shape
estimation of spatial elastic wires using F/T measurements
with a full scale dual-arm robotic system.

II. BACKGROUND

In this section, we briefly present the theoretical background
from Bretl and McCarthy [14]. Their work showed that each
equilibrium configuration of a Kirchhoff elastic rod [22]
corresponds to a unique point in a subset of R6. Furthermore,
it was shown that a configuration is, in fact, the force and
torque exerted at the base of the wire.

A. The configuration space of an elastic wire

We assume a wire of length L that is straight in the
undeformed configuration with high enough stiffness so that
the effects of gravity can be neglected. Using t ∈ [0, L] to
denote arc-length along the wire, the position and orientation
of the wire at arc-length t are described by an element q(t)
of the special Euclidean group SE(3). The wire’s shape is
described by a continuous map q : [0, L] → SE(3). In the
Kirchhoff model, the wire is allowed to twist and bend, but

is unshearable and inextensible [22]. These constraints are
enforced by requiring q to satisfy the differential equation

q̇ = q
(
û e1
0 0

)
, (1)

for some function u : [0, L] → R3, where overdots denote
differentiation with respect to t, the map ̂ : R3 → so(3)
satisfies a× b = âb for all a, b ∈ R3, and e1 = [1 0 0]T .

We assume that each end of the wire is held by a robotic
gripper. The position and orientation of each point q(t) on the
wire is represented relative to the gripper at t = 0 (referred
to as the base gripper) such that q(0) = I , where I ∈ SE(3)
is the identity matrix. This establishes the initial condition for
differential equation (1). Furthermore, let B ⊂ SE(3) denote
the space of boundary conditions at q(L), the configuration
of the gripper holding the wire at t = L (referred to as the
second gripper) is denoted by b ∈ B.

We define the set A ⊂ R6 by

A = {a ∈ R6 : (a2, a3, a5, a6) 6= (0, 0, 0, 0)} (2)

The setA is simply R6 with a two-dimensional plane removed.
Each point in A corresponds to an equilibrium configuration
of the wire and a local minimum of the total elastic energy
of the wire. Proof for this can be viewed in Theorem 5 of
Bretl and McCarthy [14]. Thus, one can solve the following
six ordinary differential equations

dµ1

dt
=
µ3µ2

c3
− µ2µ3

c2

dµ4

dt
=
µ3µ5

c3
− µ2µ6

c2
dµ2

dt
= µ6 +

µ1µ3

c1
− µ3µ1

c3

dµ5

dt
=
µ1µ6

c1
− µ3µ4

c3
dµ3

dt
= −µ5 +

µ2µ1

c2
− µ1µ2

c1

dµ6

dt
=
µ2µ4

c2
− µ1µ5

c1

(3)

on the interval t ∈ [0, L] with the initial condition µ(0) = a
for a ∈ A. In addition, c1 > 0 is the torsional stiffness of
the wire and c2, c3 > 0 are the bending stiffnesses. Next,
functions u1 : [0, L] → R and u2, u3 : [0, L] → R are the
twisting and bending strains along the wire, respectively, such
that u = (u1, u2, u3)T and ui = µi/ci for i = 1, 2, 3. Solving
(1) with the resulting u produces an equilibrium shape of the
wire, denoted by the pair of functions (q,u). Each (q,u) and
the corresponding µ are completely defined by the choice of
a ∈ A. Therefore and in practice,A serves as the configuration
space of the wire. The resulting map is defined by C = Φ(A).
The map Φ is injective, i.e. for each (q,u) ∈ C there exists
a unique a ∈ A such that (q,u) = Φ(a). Furthermore, one
may solve for matrix J : [0, L] → R6×6, the following linear
arc-length-varying matrix differential equations

Ṁ = F(µ(t))M J̇ = GM + H(µ(t))J (4)

with initial conditions M(0) = I and J(0) = 0. Definitions
for G, F(·) and H(·) are given in [14]. Here also, the matrices
M and J are completely defined by the choice of a ∈ A.

We denote the set of all a ∈ A that correspond to stable
equilibrium configurations by Astable. A configuration (q,u)
is a stable equilibrium configuration if det(J(t)) 6= 0 for all
t ∈ (0, L]. Hence, we have a numerical test for each configu-
ration a ∈ A to determine which equilibrium configurations of
the wire is in Astable. We define the free configuration space
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Afree ⊂ Astable to be the set of all a ∈ A that correspond
to stable equilibrium configurations of the wire and do not
contain self-intersections. We next define the map Ψ : C → B
such that a configuration (q,u) is mapped to q(L). Given a
path of the wire in Cstable, the function Φ can be used to find
the path of the robotic gripper that causes the wire to follow
the path in Cstable. In particular, the map

Γ : Astable → Bstable, (5)

where Γ = Φ◦Ψ, takes a ∈ Astable to the corresponding pose
of the second gripper b = q(L) ∈ Bstable. Map Γ is a local
diffeomorphism [14].

B. Physical meaning of a ∈ A
The resulting function µ : [0, L] → R6 can be interpreted

as the vector of internal forces and torques along the wire.
Therefore, we can describe the force and torque at point t
along the wire as

f(t) = (µ4(t), µ5(t), µ6(t))
T (6)

τ (t) = (µ1(t), µ2(t), µ3(t))
T
, (7)

respectively, where µj(t) is the jth component of µ(t) [14].
Consequently and since Φ is injective, any equilibrium con-
figuration a = µ(0) is completely defined by the force f(0)
and torque τ (0) at the base gripper. In other words, by
solely measuring the load exerted on the gripper using a F/T
sensor, one can directly acquire the configuration a and, using
Φ(a), solve for the shape of the wire q. Similarly, the load
measurement provides the expected position of the second
gripper b.

III. METHOD

Given two robotic arms with a Force/Torque (F/T) sensor
mounted on one arm. The arms hold a wire of length L
and mechanical coefficients c = (c1, c2, c3)T by its end-
tips. We aim to use the measurement ã ∈ A of the F/T
sensor to approximate the shape of the wire q̃. Motion of
the wire is considered to be quasi-static in order to maintain
equilibrium configurations. In this section, we present the
proposed framework accurately manipulate a given wire. A
scheme of the framework is illustrated in Figure 2. We first
describe the process to estimate the length and coefficients of
a new wire solely using F/T measurements and second gripper
pose b. Then, we propose an easy to implement rule to control
the shape of the wire.

A. Perturbation mapping from A to B
Given ai ∈ Astable and its corresponding end-tip pose bi =

Γ(ai). We define an homogeneous transformation matrix M ∈
SE(3) with δx ∈ R3 and exponential coordinates w ∈ R3 and
δθ ∈ [0, π) such that

M(δb) =

[
ewδθ δx

0 1

]
, (8)

where
δb =

(
wδθ
δx

)
. (9)

Matrix M is defined to map between two configurations in B
such that

bi+1 = biM(δb) (10)

where perturbation to bi+1 will result in wire configuration
ai+1. Map Γ is a local diffeomorphism being smooth and has
a non-singular Jacobian matrix J(L). From Theorem 7 and
equation (37) in [14], we get that

δb ≈ J(L)δa (11)

where δa = ai+1 − ai. Equation (11) states that matrix J(L)
contains information about the relationship between small
changes in A and small changes in B. Therefore and given
a desired ai+1 in the vicinity of ai, the required perturbation
δa in A can be obtained. Then, by solving (11), one can use
map (10) to compute the required perturbation in B in order
to move a wire from configuration ai to ai+1.

B. Real-time approximation of c and L

Given a measurement ãj of the F/T sensor, one can solve
(qj ,uj) = Φ(ãj) with (3) to acquire the current shape qj of
the wire. In order to solve (3), however, one must first estimate
the mechanical coefficients vector c of the wire. Given a
wire picked-up by two robotic arms, the information available
includes measurements of ã and b̃. We aim to rapidly compute
an estimation c̃ of c and the wire length L̃. We first formulate
the cost function to be minimized in order to estimate c. Recall
that matrix J(L) is dependent on the choice of c. Hence, (11)
implies that differential measurements of a and b are required
in order to estimate c and L. We propose a real-time model
identification process based on such notion.

While moving the robot arms, a path Bc =
{b̃1, b̃2, . . . , b̃m} of the second gripper relative to the
base one is being recorded along with its corresponding
vectors of force and torque Ac = {ã1, ã2, . . . , ãm} exerted
on the base gripper. Sets Ac and Bc are then used to
compute the differential sets A′c = {δã1, δã2, . . . , δãm−1}
and B′c = {δb̃1, δb̃2, . . . , δb̃m−1}, respectively, where
δãi = ãi+1 − ãi and δb̃i is computed according to (9)-(10).
Also, let η = (c, L)T ∈ R4 be the vector of unknown
parameters. Furthermore, we define matrix J̄η(a) to be the
Jacobian J(L) of configuration a and computed with η. An
approximation of η is the solution of the following problem

η∗ = argmin
η

m−1∑
i=1

‖J̄η(ãi)δãi − δb̃i‖2

s.t. η > 0.

(12)

Problem (12) is non-linear and non-convex with regards to
η and, therefore, requires a global minimization algorithm.
We employ a wire model identification process based on the
Particle Swarm Optimization (PSO) [23] algorithm. PSO is
a meta-heuristic global optimization algorithm that minimizes
some cost function by iteratively improving candidate solu-
tions. The algorithm maintains a population of particles in the
search space, i.e., candidate solutions, each having its own
cost value. Their position is iteratively updated according to
simple mathematical rules. The rules consider the momentary
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Fig. 2. Illustration of the control scheme. In an off-line operation, parameters estimation will estimate c and L, and update the model. Also, in an offline
process, a planner plans a path to some goal. In the online process and given a goal configuration ag or a path γA to track, the controller will provide the
required perturbations of the second gripper. Feedback is acquired using a force/torque sensor on the base arm whom provides information about the current
configuration ac of the wire.

best local and global cost, and are aimed to both explore new
regions and exploit local information. Since our goal is to
estimate η in real-time, convergence to the best solution given
some amount of data must be fast. Thus, a small population
size is used. The particles are continuously updated when
new measurements are acquired to refine η∗. Moreover, to
avoid convergence to local minima, we randomly sample new
particles over the search space.

C. Control in Afree
Given a wire goal configuration (q,u)g ∈ C, directly

controlling the path of the wire in C requires continuous
visual feedback of its shape while the policy for moving the
arms is not clear [9]. Alternatively, we propose to control the
motion in A with no visual perception and based solely on
F/T measurements. Given the current start configuration of
the wire as ∈ Afree and goal destination ag ∈ Afree, we aim
for a control rule for the grippers to manipulate the wire from
as to ag . From perturbation mapping (11), we can formulate
an iterative correction rule for the second gripper pose relative
to the base as

δbi = KJ̄η∗(ãi)(ag − ãi) (13)

where ã0 = as. The control gain K > 0 is chosen to constrain
motion of the wire to small steps in order to enable frequent
corrections of deviations. In addition, a small value for K
prevents fast manipulations that could hinder the quasi-static
motion required to maintain static equilibrium. According to
(10), applying perturbation δbi to the current configuration bi
of the second gripper (relative to the base gripper) yields

bi+1 = biM(δbi). (14)

The value for ãi+1 is acquired once the second gripper is
moved to bi+1. The process is repeated for i = 0, 1, . . . , k
until satisfying ‖ag − ãi‖ < ε where ε > 0 is an accuracy
distance threshold in A.

When no uncertainties exist, the motion will be on a straight
line ā(σ) = σ(ag − as) + as for σ ∈ [0, 1]. If as and
ag are A-connected [14], i.e., ā(σ) ∈ Afree is satisfied
for all σ ∈ [0, 1], motion to ag along ā(σ) is feasible.
However, controller (13)-(14) ignores the kinematics of the

dual-arm system and does not guarantee it can provide the
required motion. Hence, tracking a planned path where these
are constrained is presented next.

D. Path tracking

Let Q be the configuration space of the dual-arm system
formed by their joint space product. The configuration space
of the wire and robot system is defined as Z = A × Q.
Furthermore, let Zfree ⊂ Z be the set of configurations that
satisfy joint limits, wire stability and collision-free. A motion
planner, such as the one proposed in [16], would output a
continuous path γ : [0, 1] → Zfree from the current start
configuration γ(0) = (as, φs) ∈ Zfree to a desired one
γ(1) = (ag, φg) ∈ Zfree. Path γ(s) with s ∈ [0, 1] can be
divided into γA(s) ∈ A and γQ(s) ∈ Q. Planning in Zfree
ensures that the path is feasible in terms of wire stability,
obstacles and kinematics of the arms.

While the planning of path γ considers motion both in Q
and A, the tracking accuracy of the wire is prioritized for
successful task completion. In open-loop control, however,
tracking would be conducted by solely moving the arms along
path γQ without the ability to reason about accuracy along
γA . Therefore, positioning inaccuracies and uncertainties may
deviate the wire from the desired path γA in Afree. Correcting
deviations along γA is not possible in such approach. Alter-
natively, we propose to ignore γQ and control the motion to
solely track γA using (13)-(14). Tracking would be performed
on a set of N discrete points {ā0, ā1, . . . , āN} ∈ γA(s) where
āi = γA( iN ). The path in Afree is now piece-wise linear and
motion between each two points is controlled as described
in Section III-C. While we ignore the planned path γQ , if
the model of the wire is sufficiently accurate, the true path
γ̃Q of the dual-arm system with (13)-(14) is expected to be
approximately similar such that γ̃Q(s) ≈ γQ(s).

IV. EXPERIMENTS

To validate our approach and analyze performance, we
have built an experimental setup comprised of the Yaskawa
Motoman SDA10F dual-arm robot seen in Figure 1. On its
left hand, we have mounted a six-axis F/T sensor (Bota Sen-
sONE). The F/T sensor has a gravity compensation module.



MISHANI et al.: REAL-TIME NON-VISUAL SHAPE ESTIMATION AND MANIPULATION CONTROL OF AN ELASTIC WIRE 5

In addition, chuck grippers were fixed in both hands to hold
the wires. A set of V = 11 fiducial markers was placed along
the installed wire so that a motion capture system is able to
provide ground-truth measurements of its shape in real-time.
The system can be seen in Figure 1. All data acquisition,
control and communication was implemented using the Robot
Operating System (ROS) over an Ubuntu machine. Videos
of the experiments and demonstration can be seen in the
supplementary material.

A. Force/Torque sensor Calibration

Direct measurements of the F/T sensor do not reflect the
pure force and torque that are exerted by the wire due to
gripper fabrication uncertainties and intrinsic non-linearity
of the sensor. Hence, we employ a machine learning based
calibration process of the F/T sensor. We use a Nitinol wire
with known length and mechanical coefficient vector c to
collect labeled data. The wire is manipulated through various
configurations while recording for each the F/T measurement
aj and the corresponding set of marker locations Pj =
{pj,1, . . . ,pj,V } where pj,k ∈ R3 is the spatial position
of marker k relative to the base gripper. For each sample
{aj ,Pj}, we compute the theoretical wire configuration aj
by solving the following minimization problem

aj = argmin
a

V∑
k=1

‖pj,k − xk(a)‖2 (15)

where xk ∈ R3 is the closest point to pj,k on a wire
(q,u) = Φ(a). Problem (15) is solved off-line for each sample
using PSO. Note that the solution of (15) is the inverse of
Γ where the respected a is found based on a desired shape
of the wire. The final product is a dataset comprised of K
input samples {a1, . . . ,aK} and output labels {a1, . . . ,aK}.
The data is then used to train an Artificial Neural-Network
(ANN) to map a perceived F/T measurement to the respected
model-based configuration a of the wire. This process is done
once. Then, the trained ANN can be deployed to acquire wire
configurations in real-time and approximate c as described
next.

B. Approximation of c and L

We have conducted an approximation of two Nitinol wires
of 2 mm and 3 mm diameter with known mechanical coeffi-
cients.The second gripper was randomly moved while adding
poses to Bc and F/T measurements to Ac. The sampling
frequency is 10 Hz. Using PSO with 20 particles, vector η
was approximated by solving (12) while collecting data in
real-time. Table I presents the average of the approximated
values and their relative error after 10 repeated trials and for
only three sampled points in {Ac,Bc}. Figure 3 presents the
approximated values for the 3 mm diameter wire with regards
to the number of recorded data points in {Ac,Bc}. The results
show that with only two samples, the approximation accuracy
is high. Adding more data points does not provide significant
accuracy improvement. In addition, Figure 4 reports the con-
vergence time to reach a solution given a number of samples.

TABLE I
ACCURACY RESULTS FOR MECHANICAL COEFFICIENTS AND LENGTH

ESTIMATION OF A NITINOL WIRE

Diameter Coefficient True Estimated Relative Error (%)

2 mm

c1 (Nm2) 0.042 0.043 ± 0.006 2.4
c2 (Nm2) 0.055 0.056 ± 0.008 1.8
c3 (Nm2) 0.055 0.056 ± 0.008 1.8
L (m) 0.630 0.635 ± 0.012 0.8

3 mm

c1 (Nm2) 0.214 0.215 ± 0.008 0.5
c2 (Nm2) 0.278 0.279 ± 0.011 0.4
c3 (Nm2) 0.278 0.279 ± 0.011 0.4
L (m) 0.820 0.811 ± 0.013 1.1

Fig. 3. Mean error and standard deviation for approximating c and L for the
3 mm diameter wire with regards to the number of sample points.

The results show that an accurate real-time approximation is
available after only three seconds of motion while sensing only
F/T and second gripper poses.

C. Wire shape estimation

In this section, we analyze the accuracy of shape estimation
using the F/T measurements. Four wires are tested including
three Nitinol wires of different lengths and diameters, and an
electric cable made of copper with a polymeric insulator. For
each wire, the mechanical properties were estimated. Then,
pose estimation was averaged for 50 configurations in Afree.
Table II presents the mean and standard deviation shape errors
for the tested wires. The results show that Nitinol wires

Fig. 4. Time to estimate c and L for the 3 mm diameter wire with regards
to the number of samples taken.
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TABLE II
ACCURACY RESULTS FOR SHAPE ESTIMATION OF VARIOUS WIRES

Num. Wire
type

Diameter length Mean Error
(mm) (mm) (mm)

1 Nitinol 2 630 5.72 ± 2.58
2 Nitinol 3 910 7.42 ± 1.33
3 Nitinol 3 820 6.55 ± 0.87
4 Electric 3 920 52.3 ± 11.5

Fig. 5. Shape estimation of a wire configuration using only F/T measurement.
The circular blue markers are the ground-truth measured using a motion
capture system and the solid curve is the estimation. Average shape estimation
error along the wire is 5.81 mm.

acquire high shape estimation accuracy since their mechanical
properties comply with the assumption described in Section
II-A. On the other hand, the electric wire is not straight in
the relaxed form and highly affected by gravitation which is
not included in the model. Hence, the electric cable does not
comply with the assumptions of the model and large errors are
exhibited. Figure 5 shows an example of one pose estimation
with Nitinol wire number 3.

D. Control

In the first control experiment, we test the accuracy when
manipulating the wire to given goals using (13). Hence, we
sample 30 random start and goal configurations in Afree
which are known to be A-connected. Once the system is at
a start configuration, the controller is applied to reach the
corresponding goal. The controller gain was set to K = 0.2.
We compare the control to an open-loop setting in which
a straight line path from as to ag is computed along with
the corresponding gripper poses. Then, the gripper poses are
rolled-out without any feedback. Furthermore, we test the
performance in a case where the positioning of the grippers is
inaccurate. Thus, we add random normal noise N (0, 10) mm
and N (0, 3◦) to the position and orientation, respectively, of
the control output δbi in (13). Hence, we add inaccuracies to
the relative pose between the two grippers.

Table III presents results of the mean shape error along the
wire for open and closed loop control with and without adding
noise. Without noise, the high accuracy of the robotic arms
provides low errors in open-loop. However, inaccuracy of the
arms (with noise) leads to poor goal reach. On the other hand,
the proposed closed-loop control over A shows the ability to
compensate these inaccuracies and maintain accuracy with and
without noise. Figure 6 shows an example of motion towards
a goal in the A in open and closed-loop control. Closed-
loop control exhibits smoother motion along a straight line
and better accuracy at the final configuration. Figure 7 shows

TABLE III
MEAN ACCURACY FOR REACHING GOALS

Open-loop (mm) Closed-loop (mm)
without noise 4.80± 1.19 9.67± 3.02
with noise 17.35± 9.54 9.11± 3.62

Fig. 6. Wire manipulation towards the goal in the A with open (dashed) and
closed-loop (solid) control. Dotted lines illustrate the nominal straight line
path in A.

the corresponding wire shape errors in C relative to the shape
(q,u)g = Φ(ag). The figure also shows (in dotted lines) the
error for moving along a straight line in B without considering
F/T measurements. Closed-loop control clearly reaches closer
to the desired shape. It is important to note that, while the
control converges to the desired configuration in A, the error
in C did not converge to zero due to inaccuracies of the F/T
sensor calibration model described in Section IV-A. Overall,
the results exhibit good accuracy in reaching various goals
with control regardless of arm inaccuracies.

We now experiment the tracking of a path with open and
closed loop control as discussed in Section III-D while includ-
ing the same noise. We have implemented the asymptotically
optimal variant of the Rapidly-exploring Random Tree, i.e.,
RRT∗ [24]. The RRT∗ planner ensures that the path from
as to ag is in Afree while minimizing path length. For a
set of ten arbitrary start and goal configurations, we have
planned and rolled-out the paths in open and closed loop
control. Table IV presents the mean and maximum shape
error along the paths. Furthermore, Figures 8 and 9 show

Fig. 7. Wire shape error during manipulation to the goal ag with open
(dashed) and closed-loop (solid) control. Dotted curve show the error for
an open-loop while tracking a straight line path in B.
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TABLE IV
ACCURACY OF PATH TRACKING

Open-loop (mm) Closed-loop (mm)
Mean 11.01± 5.21 6.22± 1.83
Max. 31.51 11.62

Fig. 8. Tracking of a path in A planned using RRT∗ with open (dashed) and
closed-loop (solid) control. Black dashed lines illustrate the planned path to
track in A.

an example of tracking one path. The fine tracking along the
planned path with closed-loop control is shown compared to
non-smooth and erroneous tracking with open-loop. Snapshots
of the motion with pose estimation are shown in Figure 10.
Here also, the small tracking errors in closed-loop are imposed
by accuracy of the F/T sensor calibration. Nevertheless, these
experiments validate the ability of the proposed closed-loop
control to maintain good tracking along planned paths.

E. Demonstration

We have conducted a demonstration in which the robot must
manipulate the wire through a narrow passage formed by two
obstacles. The width of the narrow passage is 50 mm. Two
start and goal configurations were chosen and a path between
them was planned using RRT∗. Then, the path was rolled-
out with open and closed-loop control in real-time for ten
attempts each. Here also, normal noise was included similar
to previous sub-section. Failure is declared when the wire
collides with an obstacle and can be detected when large
deviations in the F/T measurements occur in a short period
of time. Figures 11-12 show the path tracking of roll-outs
in open-loop with a collision and closed-loop control. Once
the wire has collided, the F/T measurements include contact

Fig. 9. Average shape error of the wire during path tracking with open and
closed-loop control.

Fig. 10. The wire is controlled to track a path in Afree planned with
RRT∗. White circles are the measured markers along the wire and the cyan
curve shows the current pose estimation based on F/T sensing. Yellow curves
indicate intermediate configurations to pass along the motion while the green
curve illustrates the goal. Mean shape error across the manipulation is 6.2mm.

Fig. 11. Roll-out of the path between the obstacles in open (dashed) and
closed-loop (solid) control. Black dashed lines illustrate the planned path to
track in A. The roll-out in open-loop collided and the F/T measurements
significantly deviated from the planned path in A.

loads and it is no longer possible to estimate the shape of the
wire in order to return to the path. Due to better tracking
with control, the success rates for tracking the path with
open- and closed-loop control are 30% and 90%, respectively.
Figure 13 shows snapshot of one successful roll-out with
closed-loop control. The demonstration results validate the
accurate tracking and emphasize the importance of accurate
path tracking in cluttered environments.

V. CONCLUSIONS

We have addressed the problem of estimating the shape of a
wire solely based on F/T measurements at the base gripper. A
complete framework has been proposed where the mechanical
properties of the wire are rapidly approximated and the wire
can be accurately manipulated with closed-loop control. The
shape of the wire is controlled in the configuration space of the
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Fig. 12. Average shape error of the wire during path tracking between the
obstacles with open and closed-loop control. The roll-out in open-loop collided
and the motion significantly deviated from the planned path.

Fig. 13. Snapshots of the robot manipulating the wire between obstacles in
closed-loop control with F/T feedback.

wire rather then in space of gripper poses. In such way, the
manipulation can be performed without explicit information
on the spatial shape of the wire. The experiments have shown
that, indeed, accurate manipulations can be performed without
complex visual perception. We have also evaluated the control
of the wire in A. Open-loop control has been shown to be
feasible when the robotic arms are accurate. Nevertheless,
closed-loop control maintains accurate manipulations even
when the accuracy of the arms is low. Future work may
combine visual perception and F/T measurement to reduce
estimation inaccuracies. Additionally, an algorithmic solution
is required in order to detect the location of collisions in
order to retract properly. Machine learning methods could be
incorporated into the model in order to reduce the effects
of obstacle disturbances and uncertainties when manipulating
wires, such as the electric cable, that do not comply with the
model assumptions.
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