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Abstract

Training Reinforcement Learning (RL) policies for a robot requires an
extensive amount of data recorded while interacting with the environ-
ment. Acquiring such a policy on a real robot is a tedious and time-
consuming task. This is more challenging in a multi-agent system where
individual data may be required from each agent. While training in simu-
lations is the common approach due to efficiency and low-cost, they rarely
describe the real world. Consequently, policies trained in simulations
and transferred to the real robot usually perform poorly. In this paper,
we present a novel real-to-sim-to-real framework to bridge the reality
gap for an agent in collective motion of a homogeneous multi-agent sys-
tem. First, we propose a novel deep neural-network architecture termed
Convolutional-Recurrent Network (CR-Net) to capture the complex state
transition of an agent and simulate its motion. Once trained with data
from one agent, we show that the CR-Net can accurately predict motion
of all agents in the group. Second, we propose to invest a limited amount
of real data from the agent in a generative model. Then, training the
CR-Net with synthetic data sampled from the generative model is shown
to be at least equivalent to real data. Hence, the proposed approach pro-
vides a sufficiently accurate model with significantly less real data. The
generative model can also be disseminated along with open-source hard-
ware for easier usage. We show experiments on ground and underwater
vehicles in which multi-agent RL policies are trained in the simulation
for collective motion and successfully transferred to the real-world.
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1 Introduction

Multi-Agent Reinforcement Learning (MARL) addresses the decision-making
for multiple agents in a common environment moving collectively [1, 2]. Many
MARL algorithms were developed in recent years [3, 4] while only few were
tested on real robots [5, 6]. In general, training Reinforcement Learning (RL)
policies on real robots is a tedious and time consuming task [7]. In addition, the
robot must work for a very long time which may cause damage and wear, and
may pose danger. The problem is even more challenging in a multi-agent sys-
tem where individual data is required from each agent. Training in simulation,
on the other hand, is a compelling solution where the data is acquired at a lower
cost [8]. Simulation-based learning provides a cost-effective way to collect data
through interactions with the environment. Such an approach, for instance, was
used for obtaining control for an autonomous vehicle using a simulation with
synthetic images [9]. A similar approach was used for autonomous soil excava-
tion [10]. However, simulations rarely capture reality and the trained policies
are usually poorly transferred [11]. This problem is even worse for open-source
hardware such as for underactuated robotic hands [12] and mobile robots [13].
Such hardware is usually 3D printed accompanied by low-cost actuators which
impose many fabrication uncertainties in, for example, friction, size, mass and
compliance. Therefore, acquiring analytical models for these systems is a chal-
lenging problem, even for experienced practitioners, leading to the lack of a
good simulator [14].

Learning a policy solely from a simulation and deploying it to the real
world is considered a hard challenge. This problem is commonly referred as
the Reality Gap or Sim-to-Real (simulation to reality). When lacking a fea-
sible simulator, the common approach to bridge the reality gap is to collect
data from the real robot in order to generate a data-driven simulation. Such
approach is often termed real-to-sim [15]. The training data is used to learn a
forward dynamics model which maps a current state of the robot and a desired
action to the next state [16]. This is commonly done using a supervised learn-
ing method such as an Artificial Neural Network (ANN) or Gaussian Processes
[17]. With such model, one can train RL policies using a nearly real simulator
and transfer them to the real system. However, this approach yet requires a
large amount of training data, may be time consuming, can damage the robot
and pose danger to its surrounding.

In this work, we propose a real-to-sim-to-real framework to learn a general
and task-agnostic data-based simulation for one mobile robot. The simulation
is later used to simulate all robots in a homogeneous multi-agent system to
be deployed in the real world for collective motion control. In other words,
we exploit the nature of the system such that having a model for one agent
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Fig. 1: (left) A group of micro-ground robots moving collectively towards a
target with a trained reinforcement learning policy and (right) the data-based
simulator used for training the policy.

and treat the multi-agent system as a set of single-agent forward models. This
allows easy model learning that is suitable for various mobile robot group
tasks. The learned model can be used to simulate a large number of agents in
RL policy learning for collective motion while each agent can sense neighbor-
ing agents. In this work, we address small mobile robots with low-dimensional
action and configuration spaces. Once a model of such robot is acquired, one
can train a MARL policy in the data-based simulator and deploy many agents
with low-cost. While we focus and demonstrate MARL, motion planning [18]
and Model Predictive Control [19] are additional applications where synchro-
nization between agents can be done using the proposed modeling framework.
An example of a multi-agent system and the corresponding data-based simula-
tor is seen in Figure 1. Furthermore, the proposed framework does not require
any mechanical or dynamic modeling expertise for the particular mobile robot.
A practitioner is only required to record a limited amount of real data during
random motion of a single robot.

The proposed framework illustrated in Figure 2 consists of two main com-
ponents: a novel ANN architecture for learning a forward dynamics model and
the generation of synthetic data to train it. We first propose the Convolutional-
Recurrent Network (CR-Net) designed to learn a forward dynamic transitions.
CR-Net is a novel ANN architecture which uses convolutional layers and Long
Short Term Memory (LSTM) cells. We show that the CR-Net achieves high
accuracy for all agents with data collected from a single agent. Furthermore,
acquiring an accurate forward dynamics model for the robots may require
extensive recording of a large number of real state-action transition samples.
Therefore, rather than investing a large amount of data to train the forward
dynamics model, in the second component of the framework, we propose to
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invest a limited amount of real data recorded from one agent to train a gener-
ative model. The generative model can provide an infinite amount of synthetic
transition data with low computational resources and without moving any
robot. The limited amount of real data required to train the generative model
is significantly lower than the amount of real data required to directly train the
forward dynamics model. Hence, the required effort to collect data is reduced.
We utilize the Generative Adversarial Network (GAN) [20]. Synthetic labeled
data generated by the GAN with a much lower cost than real data would be
used to train the CR-Net. The synthetic data can be used to supplement the
real data or replace it completely. In fact, we show that our approach can sig-
nificantly reduce the size of real data required in order to acquire an accurate
forward dynamics model.

While the use of generative models to create synthetic training data is not
novel, the common applications are the generation of synthetic image data [21].
For instance, recent work used GAN to generate synthetic simulation images
for domain adaptation in order to reduce the number of real-world images
required to achieve high performance [22]. Contrary to previous GAN work, we
propose the use of GAN to generate synthetic one-dimensional data of state-
action transitions. To the best of the author’s knowledge, this is the first use
of synthetic data that does not consider images and in the context of robot
forward dynamics model. The proposed CR-Net along with GAN provides an
accurate model, that is at least equivalent to using real data, for similar agents
with no further data collection effort. It is important to note that, in this work,
the goal is not to propose any RL policy or controller for a multi-agent system,
but rather to improve sim-to-real transfer and to provide the foundation for a
data-efficient and accurate simulator for training collective motion policies for
such system.

The framework enables hardware, or open-source hardware in particular,
to be accompanied with an already trained GAN. Therefore, open-source dis-
semination of the generative model rather than data would be easier and
provide flexibility for the prospective user. The user will have a deployment-
ready labeled data generator which can cope with fabrication uncertainties of
open-source hardware. The generator can immediately provide synthetic data
for a user to build a custom (e.g., one can choose which features in the state
to used) and close-to-reality simulator. In the simulator, the same forward
dynamics model could be applied individually to each agent in a multi-agent
system. The simulator can be used for training a model-free or model-based
RL policy to complete a shared task. Deployment of the policy on the real
system is then straight-forward without additional effort.

2 Related Work

In MARL, the agents simultaneously learn a policy by observing and inter-
acting with the same environment. Each agent is working to maximize some
individual reward or a shared one for all agents [23]. Learning collective motion



Springer Nature 2021 BTEX template
Learning a Data-Efficient Model for a Single Agent in Homo. Multi-Agent Sys.

Transition mode/
Xt, At

T _LbCR—Net—*
) e

J Discriminator
Z ~ N Generator Real/Fake

G(z) n .

) . .

backpropagation '

Fig. 2: The proposed CR-Net is a forward dynamics model trained to map
current state and future action to the next state. The model can be trained
using data T from the real system or synthetic data 7, from the generator of
the GAN.

for multi-agent systems has potential applications in coordinated search and
rescue, autonomous vehicle routing [9] and wireless sensor networks [24]. In
addition, MARL also applies to policy training for aerial, ground and underwa-
ter swarms [25]. In this work, we focus on collective motion of a group of robots.
Collective motion can be, for instance, joint reach to a goal, joint motion along
a guiding path, reach to some organized form or distributed coverage across a
pre-defined region [26, 27].

One may consider group collective motion with centralized or decentral-
ized policies [28]. In a centralized policy, a global decision maker has access
to the full state of the agents and commands joint actions to them all [29].
One approach is to learn a policy where the decision maker has a joint state
representation of all agents. However, the state-space is exponentially grown
with the increase of agents [30]. Hence, a different policy approach trains a
set of independent sub-policies where the sum of local rewards is the joint
reward [31]. However, some agents may become ineffective or passive so to not
interfere other agents. In a decentralized policy, on the other hand, there is
no global decision maker [32-34]. Therefore, each agent must take individual
actions based on partial or local observation of the global system state [35]. In
other words, an agent cannot see the local states of all other agents nor their
next actions. Hence, it must decide the next action on its own, based on local
observations of neighboring agents while also considering the target. From the
view-point of the agent, the environment is dynamic since global knowledge is
significantly limited [30]. When comparing centralized and decentralized poli-
cies, the latter has inferior performance partly due to poor ability to scale with
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the number of agents [36]. The method proposed in this work can be applied
to either centralized and decentralized policies.

Many approaches have been proposed for bridging the reality gap and to
apply sim-to-real transfer. Early approach suggested adding noise to the sim-
ulation [37]. More recently, domain randomization or domain adaptation was
proposed where various properties in an existing simulation are constantly
varied [8]. Similarly, Peng et al. [11] proposed dynamics randomization to
randomly sample dynamic properties (e.g., robot link mass, damping and fric-
tion) in the simulator during training. In such way, the policy is able to adapt
to uncertainties that may emerge when transferring to the real system. Such
approach, however, can be time-consuming since the policy must experience a
large variance of dynamic possibilities. The work of Kasper et al. [38] used sys-
tem identification rather than dynamics randomization to align a simulation
with the real robot. A different approach used a complementary neural-network
that is trained to predict the residuals between simulated and real trajectories
[39]. All of these approaches require the formation of a physics-engine based
simulation that is sufficiently close to the real system and environment. It is
also worth mentioning some prior work on transition or forward models used
for robot control [14, 16, 40].

In this work, we explore the possibility of investing the recorded data in a
generative model rather than directly to a regression model. In recent years,
attention has been put in developing ANN models that can capture the com-
plex distribution of some data and generate artificial data from the same
distribution [41]. Some of the approaches include Variational Auto-Encoders
(VAE), Generative Adversarial Network (GAN), Deep Convolutional GAN
(DC-GAN), a fully connected and convolutional GAN (FCC-GAN), Gaussian
Mixture Model GAN (GMM-GAN) and Cycle-GAN [42]. We focus in our work
on GAN which is a powerful method to learn complex data distributions. GAN
is mostly used for image processing [43] and visual perception [44] while also
having other applications such as in health care [45] and motion planning [46].
Additional work worth mentioning are the COT-GAN [47] and SPATE-GAN
[48] aimed to learn complex spatio-temporal patterns. Nevertheless, the work
is not suitable for short term decision making as required in this work.

3 Methods

An homogeneous group of agents is required to perform collective motion. The
group can either work under a centralized or decentralized policy. In both
cases, one can find a model for a single agent and utilize it for a simulation of
multiple ones. Therefore, this section presents a framework for accurate and
data-efficient modeling of an agent. The model will later be used to evaluate
collective motion of additional agents.
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3.1 Problem Formulation

Let x € C be the state of agent A where C C R™ and n is the dimensionality of
state. Further, a € U is an m-dimensional action exerted on the agent where
U C R™ is the action space. Assuming a Markov Decision Process (MDP), the
motion of A is governed by the function f : C x U — C such that, given the
current state x; and action a;, the next state is given by x;4+1 = f(x;,a;). An
analytical formulation of forward dynamics model f is usually unavailable or
inadequate due to fabrication inaccuracies and inherent uncertainties in the
environment. Consequently, an analytical model f particularly tuned for agent
A will, most likely, yield erroneous predictions for agent B. Therefore, we aim
to learn a forward dynamics model f trained over data from one agent that
can be independently applied to each individual agent in a multi-agent system.

3.2 Data collection

Training data is collected by driving an agent in the state space with uni-
form random actions. During motion, ground-truth data of trajectories is
provided. Thus, the resulting data is a set of observed states and actions
P ={(x1,a1),...,(xn,an)}. The trajectories in P are processed to a set of
inputs (x;,a;) and corresponding labels of the next state x;y;. Hence, the
training data for forward dynamics model x;41 = f(xi,al-) is of the form
T = {(xi,a;), (xi11)} 7" Note that in some systems, directly learning the
next state can be difficult when the sampling frequency is high and the consec-
utive states are too similar. Therefore, it is common to learn the change from
state x; given an action a; over some time step. Hence, the training dataset
will be of the form 7 = {(x;,a;), (Ax;11) f-V:_ll where Ax;11 = X;11 — X;. The
model would then predict

Xit1 = X; +f(Xi,ai)- (1)

It is assumed that uniform random actions provide sufficient coverage of the
state space. Nevertheless and as will be discussed later on, GAN has an ability
to interpolate over holes in the training dataset and, therefore, reduces uncer-
tainties in the corresponding regions [49]. While low-dimensional state-spaces
are considered, sufficient data (either real or synthetic) with enough cover-
age is required. This will be shown and analyzed with experiments. Hence, we
record data for a long period of time using random actions. Yet, such data is
collected once and it is shown that a trained model can be used on other agents
in the group. Analysis for the required size of data and the improvement with
synthetic data will be provided. If coverage is significantly insufficient in some
state regions, a stochastic model as in [50, 51] may be required. While not in
the scope of this paper, such a stochastic model would provide a measure of
uncertainty about state predictions.

7
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3.3 Generative Adversarial Network

A generative model is a statistical model that can generate new data from the
distribution of a real dataset. Given a set of data inputs X and labels Y, a
generative model would capture the joint probability p(X,Y) and would be
able to generate a new instance (x,y) ~ p(X,Y). A Generative Adversarial
Network (GAN) is a generative model based on deep neural-networks [52]. As
reviewed in Section 1, GAN is commonly used for image processing and to
generate new image data. Nevertheless, we propose the use of GAN to generate
synthetic one-dimensional samples that describe the motion of an agent.

GAN is comprised of two networks trained simultaneously: a discrimina-
tor and a generator networks as seen in Figure 2. The generator is trained to
capture the distribution of the training data and to generate plausible data of
the same distribution. The discriminator, on the other hand, is trained to dis-
tinguish between real data and fake data outputted by the generator. Hence,
the discriminator is able to penalize the generator for producing implausi-
ble results. In contrast, the generator attempts to maximize the probability
of the discriminator to incorrectly classify either real or fake data instances.
Consequently, GAN is often considered as a two-player game where both gen-
erator and discriminator try to overcome each other. Each model has its own
loss function. Let @ = C x U x C be the joint space of a transition such
that (x;,a;,%;41) € Q. The generator function G : R? — Q maps a d-
dimensional noise vector to a joint transition vector where d is some tunable
hyper-parameter. The noise vector z € R? is randomly sampled from a prior
normal distribution A/ and yields a generated state sample G(z) € Q. The dis-
criminator function D : @ — [0, 1] takes a joint transition vector q € Q and
tries to classify whether it came from the real dataset or artificially generated.
The output is a single scalar denoting the certainty of the classification.

The discriminator input comes from two sources including real instances
from distribution g and fake ones created by the generator. Deriving the
cross-entropy between the real and generated distributions, the loss function
is defined by

V(D,G) = Exyllog(D(x))] + Ezwn[log(1 — D(G(2)))] (2)

where E denotes the expected value. While the training of the discriminator
aims to maximize V (D, G), i.e.,

Lp = max V(D,G),
the generator requires the opposite by solving

Lg = mgn V(D,G).

We note that the generator cannot directly minimize log(D(x)) but only the
second component in (2), i.e., log(1 — D(G(z))).
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Fig. 3: Illustration of model error with regards to data size. Training an accu-
rate model requires a large amount of real data (black dashed curve). We
propose to collect a limited amount of real data (blue curve) to train a GAN,
and then generate synthetic data (red arrow) from the GAN to train the model
to reach the same error (dotted line).

3.4 Training with synthetic data

Acquiring an accurate model f may require a large number N of real samples
in 7. Collecting real data from a robot can be expensive, slow and cause
damage. Nevertheless, we hypothesize that one could acquire the same model
accuracy with a smaller amount of real data for training a GAN and then
generate synthetic data. In more details, a GAN is trained while requiring a
limited amount of real data in 7. Then, generate synthetic data comprised
of states and actions of an agent that resemble real recorded data. That is,
generator G would generate joint transition data {(xy, a, ka)}ﬁil from the
distribution of Q. The generated data is processed to a synthetic training
dataset T = {(x;,a;), (Ax;41)} 27", Once the GAN is trained, increasing
the size M of T, is computationally cheap and does not require actual data
collection from real robots. Consequently, forward dynamics model f can be
trained with a large amount of synthetic data to reach the same accuracy
as with solely real data. In summary, instead of collecting a large amount of
training data from the real system, we propose to collect a limited amount
of real data to train a GAN which, in turn, can generate a large amount of
synthetic data for training the forward dynamics model. Illustration for this
can be seen in Figure 3.

3.5 Long Short Term Memory

Long Short Term Memory (LSTM) is a class of Recurrent Neural-Network
(RNN) aimed to learn sequential data [53]. RNN’s utilize previous outputs as
inputs while including hidden states. However, the standard RNN is usually not
capable of handling long intervals where back-propagating errors tend to vanish
or explode [54]. LSTM, on the other hand, is capable of learning long-term
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Fig. 4: The proposed CR-Net architecture to predict the next step of the
agent.

dependencies by utilizing memory about previous inputs for an extended time
duration [55]. Along with an hidden state vector, LSTM maintains a cell state
vector. At each time step, the process may choose to read from the cell vector,
write to it or reset the cell using an explicit gating mechanism. Each cell unit
has three gates of the same shape. The input gate controls whether the memory
cell is to be updated or, in other words, which information will be stored.
Forget gate decides whether to reset the memory cell and removes irrelevant
information from the cell state. Similarly, output gate controls whether the
information of the current cell state is made visible and adds useful information
to the cell state. All gates commonly have a Sigmoid activation function. An
additional hyperbolic activation function distributes the values flowing through
the network and, therefore, prevents vanishing or exploding gradients. The
LSTM is trained using recorded data sequences with back-propagation.

3.6 CR-Net

We propose the CR-Net model aimed to estimate the forward dynamics func-
tion f of an agent. As discussed in Section 3.1, we assume an MDP system
where the state change Ax;,1 depends on the current state x; and future action
a; as stated in (1). In addition, the real function mapping x; and a; to Ax; 1
may be stochastic such that f ~ P(Ax;+1 | x;,a;). Nevertheless, we consider
a deterministic model in which the most probable state change is predicted.
The CR-Net model receives an (n 4+ m)-dimensional input vector includ-
ing the current state x; and future action a;. CR-Net is composed of three
parts as seen in Figure 4. The first part is a Convolutional Neural-Network
(CNN). CNN is a class of artificial NN that contains one or more convolutional
layers and is popular in tasks of image classification and segmentation [56].
A salient advantage of CNN is in its ability to automatically capture impor-
tant features without human supervision. In a convolution operation, a filter
is applied such that a window of constant width slides along the tabular data
and study patterns. The amount of filters varies from layer to layer. Conse-
quently, included filters allow the network to study different properties of the
data and enable to recognize low and high order patterns. CNN usually works
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with unstructured data such as images. However, the proposed CR-Net model
passes an input vector through n. one-dimensional convolution layers, batch
normalization and Leaky ReLU.

The second part of the model is an LSTM that receives an nj-dimensional
flattened vector from the CNN. The LSTM does not consider temporal data
(e.g., a set of past consecutive states) but sequential feed of the features of
the input vector. While the features are non-sequential [57], yet the model is
able to learn some causality between the features in the vector leading to the
corresponding output label. The LSTM contains n; recurrent layers and ny,
hidden layers. The last part is a Fully-Connected NN (FC-NN) that receives the
output of the CNN and LSTM. The FC-NN contains ny hidden layers, batch
normalization, dropout and an hyperbolic tangent (Tanh) activation function.
The last layer contains a linear function to predict the next state x;11. We
note that the conventional use of FC-NN and sequential states for the LSTM
are tested in the experimental section while yielding inferior performance.

A CR-Net trained with real data T directly collected from the robot is
denoted as CR-Net-R. Similarly, a CR-Net trained solely with synthetic data
Ts sampled by the generator of the GAN is denoted as CR-Net-S. In addition,
the CR-Net can be trained with a mix of real and synthetic data as will be
demonstrated in the experiments. As discussed in Section 3.4, CR-Net-R is
trained with real data from 7. On the other hand, much less data in 7 can be
used to train a GAN which, in turn, would generate synthetic data 7, to train
CR-Net-S. It is claimed that CR-Net-S would be at least as accurate as CR-
Net-R while requiring much less real data in total. Experiments in the next
section test this claim along with extensive analysis of the proposed approach.

4 Experiments

In this section, we test and analyze the proposed methodology and frame-
work. We experiment on collective motion of groups of ground and underwater
robots. The robots are fabricated through 3D printing and, therefore, their
design is not of high accuracy. Furthermore, the robots use low-cost actua-
tors such that two identical ones do not perform equivalently. Consequently,
each agent may behave slightly different upon exerting actions. We show that
using data from only one agent, the GAN and CR-Net can provide an accu-
rate model for a multi-agent system. The models are later demonstrated on
a MARL framework in collective motion scenarios. Videos of the experiments
can be seen in the supplementary material.

4.1 Systems

We test our approach on two micro-robot groups including the Micro-Ground
Robot (MGR) and the Micro-Underwater Robot (MUR). System CAD models
and already trained GAN of the MGR are open-sourced as described in the
data availability statement. Therefore, any user can build multiple robots and
easily generate synthetic data for modeling them. For both MGR and MUR,

11
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Fig. 5: (a) Micro-Ground Robot (MGR) and (b) its state transition from x;
to Xt+1-

Fig. 6: The (a) Micro-Underwater Robot (b) in the water and (c) a diagram
of its tail-fin propulsion.

commands are transmitted through Wi-Fi from a PC terminal in a 1.25-2 Hz
frequency. Furthermore, each robot has an Aruco marker with a unique ID such
that an upper camera can identify and acquire its state x; € SE(2) relative
to some world coordinate frame in real-time.

4.1.1 Micro-Ground Robot (MGR)

MGR is a two wheel drive mobile robot seen in Figure 5a. The body of the
MGR is fabricated by 3D printing with a Polylactic-Acid (PLA) filament. The
robot size is 90 x 84 x 54 mm and it weighs 130 grams. It is equipped with a
motor for each wheel, a DRV8835 motor controller and an Arduino board. An
action a; € R? of the robot is the required angle changes for the two wheels
during some constant time step. Furthermore, we assume that the surface in
which the agent moves on is uniform such that its transition does not depend
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on the current state. Therefore, forward dynamics model (1) depends solely
on the action Ax; = f(a;) where Ax; = (Axy, Ayy, Ab;)7 is the state change
relative to the MGR coordinate frame at time ¢ as seen in Figure 5b. We have
built five MGR units while only one was used for data collection. Data was
collected as described in Section 3.2 while having the agent move across a
smooth whiteboard plane (Figure 1). A set of N = 55,068 labeled data points
from various trajectories was collected. Test data of 5,874 points was acquired
from another agent. The other MGR/’s will further be used for RL experiments.

4.1.2 Micro-Underwater Robot (MUR)

MUR is an underwater mobile robot that swims in a constant depth of 200 mm.
The constant depth is maintained by a float connected to the MUR through
an aluminum pole as seen in Figures 6a-6b. The body of the MUR is fabri-
cated using Stereolithography (SLA) 3D printing with a resin photo-polymer
material. Its size is 160 x 205 x 40 mm and it weighs 270 grams. The MUR
is propelled with a tail-fin actuated by a micro waterproof servo motor. The
float contains an Arduino MK1000 controller and a lithium battery. The fin
of the MUR  oscillates in a sinusoidal motion such that its angle relative to
the body is given by a(t) = ¢ + ¢sin(wt) where ¢, ¢ and w are the oscilla-
tion mean angle, amplitude and frequency, respectively (Figure 6¢). Hence, an
action a; € R? is defined by a; = (¢, p,w)” which affects propulsion direction
and velocity. Such motion is a low-level mimic of underwater fish locomotion.
Unlike the MGR, the forward dynamics model of the MUR considers its state
(i.e., Ax = f(x¢,a:)) since moving on the sides of the pool may be different
than on its interior. Data was collected in a 2m x 1m pool reaching N = 15,000
labeled data points from various trajectories of the train agent. Trajectories
from another test agent with 1,372 transition points were used for testing.
While an analytical model for the MGR can be acquired with manual tuning
by an experienced practitioner [58], an accurate analytical model for the MUR
depends on a multitude of parameters [59] and, therefore, is significantly chal-
lenging to acquire. In both MGR and MUR cases, the proposed approach does
not require any experience nor understanding the mechanics of the platforms.

4.2 Model training

The training set is collected as described above. The acquired training dataset
is used to train either a GAN model to generate more training samples or
directly the forward dynamics model. The hyper-parameters of the tested net-
works were optimized using the Ray- Tune package [60] to produce the best loss
value. In particular, the optimal hyper-parameters of the CR-Net are n, = 2,
ny, =8, ng = 2, n, =5 and ny = 8 Thus, the total number of trainable
parameters is 37,211. We used the AdamW optimizer along with a general
loss function that sums the Mean Squared Error (MSE) of the agent’s posi-
tion and Mean Absolute Error (MAE) of its orientation. Additional optimized

13
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Table 1: Accuracy comparison for different models trained with real or
synthetic data with regards to the Micro-Ground Robot (MGR)

Position error (mm) Orientation error (°)

Model Train vehicle Test vehicle Train vehicle Test vehicle
FC-NN 12.3147.24 11.08+6.03 15.55+7.77 13.55+7.12
_. CNN 6.914+4.41 6.1243.84 6.7546.17 5.95+6.18
§ LSTM 6.88+3.85 6.88+3.20 10.55+6.90 10.60+6.17
~ GRU 9.45+5.61 7.714+4.59 19.564+14.85 15.89+13.40
CR-Net-R 4.6614.12 4.0643.60 5.4614.06 4.93+5.08
o FC-NN 11.1545.54 9.334+4.73 8.1946.63 6.741+5.23
= CNN 6.73+3.32 5.75+2.8 6.84+5.57 5.59+5.25
= LSTM 6.15+4.19 5.92+3.73 7.4045.80 6.06+5.34
(% GRU 9.314+6.44 8.0146.27 11.474+10.13 9.724+10.71
CR-Net-S 4.5344.23 4.06%3.53 5.2345.56 4.8245.14

Table 2: Accuracy comparison for different models trained with real
synthetic data with regards to the Micro-Underwater Robot (MUR)

or

Position error (mm)

Orientation error (°)

Model Train vehicle Test vehicle Train vehicle Test vehicle
FC-NN 29.59+14.62  30.26£14.61  23.64+17.08 22.774+16.57
_. CNN 22.74+14.27 22.81£14.93  15.78+14.75  14.724+14.90
g LSTM 26.02+15.09 25.24+14.54 16.71£+15.01  17.42415.58
= GRU 26.69+14.58  27.65+£15.20 27.65415.20 19.774+15.74
CR-Net-R | 17.16%£13.48 14.56411.96 8.084+9.125 6.5447.70
o FC-NN 30.41£15.03  31.22415.11  23.23+18.07 22.70+17.66
% CNN 22.51+14.48  22.94+14.90 16.48+15.75 15.414+15.16
< LSTM 26.32+15.25  25.38+14.75  17.37+14.96 18.11415.58
C% GRU 27.87+£15.55  27.03£14.89  27.03+14.89 21.654+17.32
CR-Net-S 18.34+13.94 16.53£13.09 9.25+10.116 6.9448.17

hyper-parameters include an adaptive learning rate initialized at 0.005138, L2
regularization of 0.006 and batch size of ds = 64 along 40 epochs.

4.3 Model Evaluation

We begin by analyzing the accuracy of the proposed approach. We present
a comparison to other common models including FC-NN, CNN, LSTM and
Gated Recurrent Unit (GRU) [61]. All models were optimized to yield the low-
est loss value and evaluated on the test data. Resulting from the optimization
of the hyper-parameters, the FC-NN, CNN, LSTM, GRU and CR-Net have
126,019, 89,275, 73,879, 73,626 and 85,511 trainable parameters, respectively.
In this part and when using synthetic data, all N real points (55,068 and
15,000 for MGR and MUR, respectively) in the dataset are used to train the
GAN. Tables 1 and 2 show average one-step prediction errors for the MGR
and MUR, respectively, over the test data. The tables show the training of the
models using real data without using GAN and synthetic data generated by
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Table 3: Accuracy comparison for different models trained with real data for
the same learning rate (0.0001) with regards to the MGR

Model Position error (mm)  Orientation error (°)
FC-NN 12.89+7.66 11.71+£5.98
CNN 7.24+4.84 6.514+4.02
LSTM 7.43£4.04 7.03£3.92
GRU 9.82+£5.72 8.03£4.76
CR-Net-R 5.09£4.88 4.91+4.15

the GAN. We include accuracy results evaluated on test data acquired from
train and test vehicles. For robustness analysis, Table 3 presents comparison
between the MGR models while trained with a common and arbitrary learn-
ing rate of 0.0001. Results show that CR-Net, with either real or synthetic
data, outperforms all other methods. While other methods use either fully-
connected, convolutional or recurrent layers, CR-Net is able to combine the
benefits of them all. Hence, CR-Net is able to better embed the transition data
and provide most accurate predictions.

Figure 7 compares accuracy of the CR-Net-R and CR-Net-S models, and
with regards to the amount of real or synthetic training data used, respectively.
For CR-Net-S, a GAN was trained with the entire real dataset. Points in the
figure are averaged over 10 runs with cross-validation of different batches along
the training data. Similarly, Figure 8 shows the accuracy of a mixed CR-Net
model trained on both real and synthetic data. The figure shows the position
accuracy with regards to the ratio between synthetic and real data. Results
show that synthetic data is at least equivalent to real data and can even
improve accuracy. Synthetic data exhibits slightly better accuracy since the
GAN inherently provides data augmentation. In practice, GAN interpolates
over holes in the training dataset and, therefore, reduces uncertainties in the
corresponding regions during testing [49]. In other words, GAN provides access
to additional information in the real dataset which cannot be accessed directly
with only a simple model [62]. Consequently, the GAN augmentation enables
better coping with uncertainties of a new test vehicle.

We next justify the use of GAN with regards to other generative models.
We compare the standard GAN model with DC-GAN, FCC-GAN, GMM-GAN
and Cycle-GAN. All models were trained with the same data. For each trained
model, we have generated 55,000 synthetic points and trained a CR-Net-S.
Table 4 reports the mean and standard deviation for position and orientation
errors over the test data, for the CR-Net-S with regards to different genera-
tive models. Synthetic data generated by the standard GAN provides better
robustness to the CR-Net. Further, we are interested in observing the accu-
racy of the CR-Net-S model with regards to the training quality of the GAN.
Hence, an analysis is performed where the accuracy of the CR-Net-S is com-
puted with regards to the number of epochs for training the GAN. For each
number of epochs, the GAN was trained with the real data and then used to
generate 55,000 synthetic points for training the CR-Net-S. Figure 9 presents
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Fig. 7: MGR position accuracy for CR-Net-R and CR-Net-S when trained
using real and synthetic data, respectively, with regards to data size. For CR-
Net-S, synthetic data was generated from a GAN trained with the entire real
dataset.
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Fig. 8: MGR position accuracy for the CR-Net with regards to the ratio
between real and synthetic training data.

the accuracy with regards to the number of epochs. The results show the mean
and standard deviation of the positional error over five repetitions for each
number of epochs. Results show the ability of the GAN and CR-Net-S to pro-
vide relatively good accuracy with an ill-trained GAN. Nevertheless, the GAN
requires sufficient training (at least 17 epochs) in order to be at least equivalent
to the CR-Net-R model trained with real data.

Figure 10 presents the position error of different regression models with
regards to the amount of data used to train the GAN. Once trained a GAN;, the
amount of synthetic data generated for training the models was constant and
equal to 55,000 points. CR-Net-S evidently maximizes the use of the synthetic
data. To better emphasize the contribution of synthetic data, Figure 11 shows
an heat-map of the MGR position accuracy with regards to the real data used
to train the GAN and the synthetic data generated from the GAN used to
train the CR-Net-S. A relatively good accuracy can be obtained with less than
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Table 4: Accuracy comparison for different generative models for the test
MGR

Position error (mm)  Orientation error (°)

DC-GAN 5.12+3.59 7.47+6.35
FCC-GAN 6.76+4.79 9.90+10.01
GMM-GAN 5.01+3.62 5.73£4.97
Cycle-GAN 4.95+3.89 5.42+£5.18
GAN 4.06+3.53 4.8245.14

17.51
15.0
12.5 1
10.0 1

Error (mm)

7.5 1

5.0 1

123456 7 8 9 10111213 14 15 16 17 18 19 20
Epochs
Fig. 9: MGR positional error mean (solid curve) and standard deviation (pink)

of the CR-~Net-S with regards to the number of training epochs for the GAN.
The accuracy of the CR-Net-R is included (dashed line) for reference.

half of the collected real data and the generation of a large synthetic dataset.
For example, with only 15,000 real points and 54,000 synthetic points (green
marker in Figure 11), the mean position accuracy (6.00 mm) is equal to 54, 000
real points (red marker). That is, the same accuracy was achieved with only
27% of the real data, or 73% less real data.For reference, we have included an
additional analysis where only 27% of the real data is used for training the CR-
Net-R. However, the data is augmented by adding a zero-mean normal noise
N(0,0%) where ¢ is the standard deviation of the noise. Figure 12 presents the
accuracy with regards to o € [0,5.4]. The results show the mean and standard
deviation of the positional error for five cross validations over different batches
of the training data for each o. Results show that adding noise to the training
data does not improve robustness of the model nor compensate for the lack
of sufficient data. The above results imply that it is better to invest a limited
amount of recorded data for training a GAN rather than directly training some
NN model. With the GAN, one can generate enough synthetic data points to
have an accurate model.

With the forward dynamics model, one can simulate the motion of an agent.
Figure 13 shows trajectory predictions of an agent in an open-loop fashion
with CR-Net-S along with FC-NN for comparison. A trajectory prediction is

17
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Fig. 10: Accuracy of forward dynamics models trained on synthetic data with
regards to the size of data used to train the GAN.

based solely on the initial state and a pre-determined sequence of actions.
The predictions are shown along with the Root Mean Square Errors (RMSE)
with regards to the recorded ground truth. Results show that, while FC-NN
performs poorly, a simulator based on CR-Net-S sufficiently represents the real
world. The simplified simulation environment for all agents while using the
trained CR-Net-S for each is seen in Figure 1.

4.4 RL Evaluation for a Single Agent

Prior to testing collective motion, we evaluate the performance of the data-
based MGR simulator for training single-agent RL policies. We set a scenario
in which one MGR agent must reach a target goal while avoiding collision with
a circular obstacle (Figure 14). We have implemented the Deep Deterministic
Policy Gradient (DDPG) [63]. DDPG is a model-free RL algorithm which will
use the data-based simulator to train a policy for the agent. It is implemented
with a reward function that rewards for reaching the target and penalizes
distance from the target or collision. Two policies were trained in simulation
using trained models presented in previous section, one based on FC-NN and
the other on CR-Net-S. Table 5 compares between the two policies and presents
the average rewards for ten roll-out trials in simulation and in real deployment.
Each simulation is rolled-out from the same initial pose of the matching real
roll-out. Furthermore, failure of a roll-out is the inability of the agent to reach
the goal (either collision or getting stuck). The FC-NN based policy shows
significant reward difference between simulation and real world along with very
low success rate. Hence, the FC-NN does not encapsulate the real system well.
On the other hand, CR-Net exhibits a good ability to simulate the real world
with fairly matching simulated and real rewards, and high success rate.
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Fig. 11: A heat-map of the position accuracy (mm) with regards to the number
real MGR data points used to train the GAN and the number of synthetic
data points (from GAN) used to train the CR-Net-S. Green and red markers
exemplify equal accuracy points.
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4.5 MARL Evaluation

We next evaluate the performance of the data-based simulators for training
MARL policies in collective motion. A decentralized MARL scenario is con-
sidered with K = 5 MGR agents. The agents are arranged in some arbitrary
initial formation and must reach a target marker while avoiding collisions with
other neighboring agents. A trained forward dynamics model is used to simu-
late each individual agent in the group. Here, DDPG is used in a multi-agent
setting where all agents share the same policy. While training a decentralized
policy, it is assumed that each agent has global knowledge about the state of
all participating agents. Note that global knowledge is a choice for the demon-
stration while local sensing can also be integrated. Hence, the reward function
r:C x A — R for each agent is defined to be

K-1 .
-5, ifd; <150
r(x,a) =r; + ry, forry = 3
(x,a) ! ; ! k {—20dd;, otherwise, 3)

where d; = ||x — x7|| is the agent’s distance from target x7 and dper =
1,400 mm is some user-defined constant. The r; reward component drives the
agent towards the target while avoiding collision with it. Hence, the agent

19
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Fig. 12: MGR positional error mean (solid curve) and standard deviation
(pink) of the CR-Net-R with regards to the standard deviation o of noise added
to the training data. In this case, only 27% of the training data is used. The
accuracy of the CR-Net-S with the same amount of data (as seen in Figure
11) is included (dashed line) for reference.

Table 5: Average rewards for single-agent RL policy roll-outs

Simulator Real world
reward reward success rate
FC-NN -0.32+£0.15  -0.58+0.20 20%
CR-~Net-S  -0.26+£0.04 -0.22+0.04 100%

should reach up to 150mm from it. In addition, reward r; is given by

- -5, if d; < 150
L 0, otherwise,

where d; = ||x — x;|| is the distance of the agent from agent i. The reward
function, therefore, rewards agents moving towards the target x; and punishes
if the agent is too close (less then 150 mm) to nearby agents with the risk of
collision. Then, two policies were trained, each using CR-Net-R or CR-Net-
S, in simulation over 500 episodes while collecting experience data from all
agents. We note that a policy trained based on the FC-NN model failed to
achieve a feasible working one due to low accuracy. Hence, mismatch errors
between the simulated and real motion lead to complete failure.

The trained policies were then deployed on the real multi-agent system.
To test the robustness of the CR-Net models, policy roll-outs were conducted
on a black concrete surface rather then on the smooth surface used for data
collection. We have tested ten roll-outs of 150 time-steps (75 seconds) for each
of the two policies. Each roll-out was deployed from different initial states and
towards some arbitrary target. Furthermore, each roll-out was compared to
a simulated roll-out from the same initial states and target. Table 6 reports
the average rewards for the simulated and real-world roll-outs with the two
policies. The average real-world reward is almost similar to the simulated one.
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Fig. 13: Open-loop prediction of MGR trajectories based solely on the initial
state and sequence of actions, while using CR-Net-S and FC-NN. The tracking
RMSE of the CR-Net-S trajectories is, from left to right, 40.4 mm, 59.9 mm,
70.1 mm and 19.8 mm. In contrast, the RMSE of the FC-NN is 562.4 mm,
458.1 mm, 366.8 mm and 304.0 mm.

Hence, the simulator sufficiently represents the real world. Figures 15 and 16
show two examples of policy roll-outs based on CR-Net-S. The average reward
acquired by the agents during the roll-out is -3.15. For comparison, the average
reward in the simulation environment for the same initial states and target is -
2.92. The results show that one trained CR-Net-S is applicable and sufficiently
accurate for all agents in the group.

Roll-out demonstration was also performed for the MUR agents. Here also,
DDPG is used with a shared policy for all agents. A policy was trained in
simulation to reach target locations in the pool. The rewards function was
similar to (3) while with dq. = 2,000 mm to reflect the size of the pool.
Snapshots of the motion between two targets are seen in Figure 17.
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;

Fig. 14: An MGR agent avoiding an obstacle (blue circle) and reaching a
target using an RL policy trained on a simulation based on CR-Net-S.

Fig. 15: A set of five MGR agents reaching a target using a trained policy while
maintaining distance among them. The policy was trained on a simulation
based on CR-Net-S.

5 CONCLUSIONS

In this paper, we have proposed a real-to-sim-to-real framework to simulate a
multi-agent system and control it in real-time. The framework is based on a
novel ANN termed CR-Net to model the motion of the agents and a generative
model for generating synthetic data. By collecting data solely from one agent
and despite inaccuracies in the fabrication, a trained CR-Net can accurately
predict motion for all agents in the group. Furthermore, we examined the influ-
ence of training the CR-Net with synthetic data generated by a GAN. Results
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Fig. 16: A set of five MGR agents reaching a target using a trained policy while
maintaining distance among them. The policy was trained on a simulation
based on CR-Net-S.

Fig. 17: Two MUR agents move in water between two targets using a trained
policy while keeping minimal distance among them. The policy was trained on
a simulation based on CR-Net-S.

Table 6: Average rewards for MARL policy roll-outs

Trained Model Simulator Real world
CR-Net-R -3.29£0.33  -3.25+0.27
CR-Net-S -3.13+£0.26  -3.37£0.32

show that CR-Net along with synthetic data from GAN can achieve high accu-
racy with significantly less real data. The GAN is also a dissemination tool
that can be accompanied to open-source hardware rather than real recorded
data. In such case, the GAN can generate a massive amount of synthetic
data points to be used in a custom model. The framework was analyzed and
demonstrated on ground and underwater multi-agent systems while exhibiting
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accurate and robust performance. Future work may observe the performance
of the proposed approach to more complex systems of higher-dimension states.
In addition, additional work may consider building a stochastic model that
encodes the uncertainty and differences between the vehicles.

Data availability. The datasets and models generated during the cur-
rent study are available in the Git repository, https://github.com/eranbTAU/
Closing-the-Reality.
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