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Abstract— Applicable human-robot collaboration requires in-
tuitive recognition of human intention during shared work. A
grasped object such as a tool held by the human provides vital
information about the upcoming task. In this paper, we explore
the use of a wearable device to non-visually recognize objects
within the human hand in various possible grasps. The device is
based on Force-Myography (FMG) where simple and affordable
force sensors measure perturbations of forearm muscles. We
propose a novel Deep Neural-Network architecture termed
Flip-U-Net inspired by the familiar U-Net architecture used
for image segmentation. The Flip-U-Net is trained over data
collected from several human participants and with multiple
objects of each class. Data is collected while manipulating the
objects between different grasps and arm postures. The data is
also pre-processed with data augmentation and used to train a
Variational Autoencoder for dimensionality reduction mapping.
While prior work did not provide a transferable FMG-based
model, we show that the proposed network can classify objects
grasped by multiple new users without additional training
efforts. Experiment with 12 test participants show classification
accuracy of approximately 95% over multiple grasps and
objects. Correlations between accuracy and various anthropo-
metric measures are also presented. Furthermore, we show that
the model can be fine-tuned to a particular user based on an
anthropometric measure.

I. INTRODUCTION

To develop a natural Human-Robot Collaboration (HRC)
system, it is necessary that the robot unambiguously perceive
the task carried out by a human. For this purpose, an object
within a human hand provides significant information about
the upcoming task and enables a substantial reduction in the
set of possible actions that the human might perform. With
such information, the robot can deliver a complementary
object or plan an assistive trajectory [1]. For instance, a
robotic arm can handover objects or assist an upper-limb
amputee in completing dual-arm tasks. Examples for such
scenarios are seen in Figure 1.

Signaling a robot of a desired assistive task in HRC
has been widely researched. Nonetheless, common HRC
approaches bear unnatural control methods including, for
example, sensing brain activities [2] or human gestures [3].
These require human pre-training and may hinder the work
flow. Vision has also been employed to identify objects in
hand [4]. However, such approach requires a direct line-
of-sight with the working area while the grasped object
and its usage may be occluded. A different approach is
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Fig. 1. A robotic arm assisting in dual-arm tasks or handing-over
complementary objects to a human user based on observations from
an FMG wearable device.

Electro-myography (EMG) where electrical muscle signals
are sensed and mapped to limb movements [5]. The accuracy
of the EMG technology, however, is commonly compro-
mised by sweat, electrode placement and crosstalk [6]. An
alternative solution is Force-myography (FMG) which non-
invasively measures perturbations of the musculoskeletal
system and has been proposed for user intention recognition
in HRC [7]. FMG utilize low-cost force sensors and a simple
acquisition device. A recent comparative work has shown
that FMG outperforms EMG both in gesture recognition and
regression-based control [8].

Early work by Amtf et al. [9] has introduced pattern iden-
tification of forearm muscle activities using body-worn force
sensors. Since then, FMG signals were shown to be simple to
acquire with a relatively high-accuracy. Consequently, FMG
was used in data-based classification of hand gestures [10]–
[12]. However, a classifier was retrained using new collected
data when replacing the sensors on the arm. Hence, once
the sensors have been removed and replaced, the trained
classifier cannot be reused. Naturally, the classifier would
also not be transferable to a different user. Furthermore,
another comparison between FMG and EMG has shown that
FMG is less sensitive to positioning variations and does not
require direct contact with the skin [13].

A work by Gigli et al. [14] uses visual perception of
objects to augment surface EMG classification of future
grasps for a prosthetic hand. A different work has shown the
ability to classify types of grasps rather than specific objects
using FMG [15]. Recent work by Kahanowich and Sintov
[16] on FMG-based object recognition has proposed a data-
based iterative algorithm for robust recognition of grasped
objects. The method used a low-cost wearable device with
15 force-sensitive resistors (FSR). The device was used to
collect data and train a classifier to recognize in-hand objects.



Fig. 2. The proposed method for data treatment and model training for object recognition using FMG measurements: (a) Data collection process in
which multiple human subjects record various grasps of different everyday objects; (b) data augmentation; (c) dimensionality reduction using a Variational
Autoencoder (VAE). Reduced representation of the data is taken from the mean of the latent space; and, (d) the proposed Flip-U-Net architecture to classify
processed FMG signals to grasped objects.

Using an iterative algorithm, the approach was shown to be
accurate while robust to re-positioning of the device, i.e.,
once the classifier has been trained over collected data, it
maintains its accuracy even if the device has been taken off
previously. Nevertheless, the classifier was trained solely on a
single user and did not exhibit a transferable property where
different humans can use it accurately. In addition, a classifier
was trained on one specific task-based grasp of each object
while different grasps of the object would most likely lead
to classification failure.

In this work, we explore the use of FMG measurements in
order to recognize grasped objects across a wide number of
users while also robust to positioning variations. We utilize
the same wearable FMG device introduced in [16]. Unlike
the previous work by Kahanowich and Sintov which relied on
single-user and single-task-based grasp for each object, we
propose a multi-user classification approach where an object
can be recognized according to various possible grasps.
Furthermore, an object class does not include a single object
whereas the classifier is able to identify untrained objects
from the same class, e.g., identify drinking cups or scissors
of different shapes and sizes. In the proposed approach,
labeled data collected from multiple human participants is
augmented and used to train a Variational Autoencoder
(VAE) [17] for dimensionality reduction mapping. Further-
more, the processed data is used to train a novel Deep
Neural-Network (DNN) architecture, termed Flip-U-Net. The
proposed approach for training a robust multi-user classifier
is illustrated in Figure 2.

Flip-U-Net is based on the U-Net originally proposed for
segmentation of bio-medical images [18]. U-Net evolved
from the traditional Convolutional Neural Network (CNN)
and focuses on semantic segmentation of images. The U-
Net architecture consists of two symmetric paths which

give it the U-shaped architecture: contraction and expansion
paths. These two paths enable context recognition and precise
localization, respectively. We propose a flipped version of
the U-Net where signals are expanded and then contracted.
Such approach enables the estimation of the signal structure
and extracts vital information for object recognition. Hence,
Flip-U-Net is shown to exploit, along with a VAE, dominant
information in a low-level non-visual application and provide
accurate classification.

The proposed approach is analyzed based on the anthropo-
metric measures of the users. We explore the effect of various
anthropometric measures of a user on accuracy. While the
overall accuracy of the model is shown to be high, we show
the benefit of fine-tuning the model with data from training
data associated to a subject with a similar anthropometric
measure. Hence, the model can reach better accuracy on a
new user when tuned with specific part of the training data.

The wearable FMG device and proposed method could
enable intuitive and non-verbal communication with a robotic
assistant. The robot is first informed of the object in the
human hand which, in turn, implies future tasks. Hence, the
robot can infer about future actions of the human beforehand
and plan a trajectory accordingly. Since the method is non-
visual, there is no dependency on a direct line-of-sight or
lighting. This work leads the way for a robot to be able to
observe human motion, recognize the task and promptly act
to assist. By doing so in real-time during motion, a robotic
arm will be able to efficiently interact with a human to
complete a shared task.

II. METHODS

A. FMG data acquisition device

We base our work on a wearable FMG device presented
in previous work [16]. The system is based on 15 low-cost



Fig. 3. FMG wearable device made of two parts for the upper
and lower forearm. Each part includes a set of force-sensitive resis-
tors (FSR) designed to sense perturbations of the musculoskeletal
system.

Force-Sensitive Resistors sensors (FSR), model FSR-402 by
Interlink Electronics. FSR sensors are made of polymer films
that vary their electrical resistance with change in surface
pressure. It has been shown that having a wide coverage
along the forearm yields high accuracy. Hence, the device
consists of an upper forearm band with six FSR sensors and
a lower forearm (wrist) band with nine sensors organized in
two rows as seen in Figure 3. The bands were fabricated
by 3D printing with an elastic polymer (Thermoplastic
polyurethane) and include a flexible bulge for each sensor to
ensure proper attachment to the skin. This design provides
flexibility during arm motion.

The system also includes a data acquisition system based
on an Arduino Mega 2560 board. The FSR sensors are
connected to the analog pins of the Arduino through a voltage
divider of 4.7 kΩ resistor. The system provides real-time
data stream of all the given sensors in a frequency of up to
300 Hz. The described system is composed of low-cost (the
prototype costs approximately $150) and light-weight (0.23
Kg) hardware which is appealing and suited for easy arm
movements.

B. Data collection

We aim to identify an object grasped by any adult human
user solely by measuring FMG signals by the device. Given a
set of m object classes {O1, . . .Om}, we require to identify
an object class from the set. That is, we require robust
real-time classification based on pattern recognition of the
input signals. This is achieved through supervised learning
trained on diverse data collected from k human subjects,
from a variety of objects of the same class (e.g., scissors of
various sizes and shapes) and from multiple re-positioning
of the device on the arm. A large amount of participants
adds variance to the data due to differences in arm thickness,
length and body fat.

Let xt ∈ R15 be the observable state of the muscu-
loskeletal system measured by the FMG system with 15 FSR
sensors. For each object class Oi, training data is collected
by holding several items of the same class. Figure 4 shows
an example of classes of scissors and drinking cups with
several items sampled during the experiments. This exposes
the model to a wider number of variants from each object
class. The data collection process includes a large number of
grips and manipulations on each object as seen in Figure 2a.
For each human subject, the collection process is composed

of M episodes where, in each episode and between objects
swapping, the FMG device is taken-off and re-positioned.
To cope with different tightening forces at each episode,
we consider episode values relative to the initial forces after
strapping in. During each episode, Ne samples are recorded
while the human manipulates the object and regrasps it.
Ultimately, the resulting training data is a set of N labeled
FMG signals Φ = {(x1, l1), . . . , (xN , lN )} where label li
corresponds to object Oli .

C. Data augmentation

We employ data augmentation to increase diversity in the
collected training data and improve the generalization abil-
ity of an Artificial Neural-Network (ANN) model, without
collecting new data. Data augmentation techniques such as
scaling, padding and flipping are commonly used for generat-
ing new realistic samples from the true data distribution prior
to training a DNN [19]. Augmentation is performed without
altering the class label. Furthermore, these techniques have
been shown to be effective for reducing overfitting [20],
[21] and can help networks overcome small datasets [22]
or datasets with imbalanced classes [23], [24].

Data augmentation techniques are usually employed on
image datasets while our FMG signals are unidimensional.
Hence, one dimensional data augmentation is yet to be well
defined. In this paper, we formulate seven data augmentation
operations on the recorded data where four are signal-wise.
Jittering is the addition of noise of some distribution to the
signal. We include two jittering variants: Exponential and
Gaussian noise. Scaling is the multiplication of the signal
by a scalar q > 0. Furthermore, Flipping is vertical flip of
the signal vector (for a vertical vector). The remaining data
augmentation operations are applied to an entire recorded
episode. With Permutation, we rearrange segments of an
episode in order to produce a new pattern. Within a window
sliding along the episode, we slice the data into equal length
slices and randomly permute the slices to generate a new
window. Next, Rotation rotates the 15×N data array of the
episode by a specified degree. Lastly, in Magnitude-Warping,
we change the magnitude of each signal by convolving the
data episode with a smooth curve varying with a normal
distribution around one. For each signal xt, we include in
the training dataset all augmented variants and the original
signal xt, as seen in Figure 2b.

D. Dimensionality Reduction

Dimensionality Reduction (DR) is the process of reducing
the number of input features in a dataset. The reduction
removes redundant features and noise from the training data
which, in turn, leads to improvement in model accuracy.
An Autoencoder (AE) is a feed-forward ANN that learns
efficient encoding of data in an unsupervised manner [25],
[26]. AE consists of an encoder and a decoder. The encoder
is used to capture key information from the data. It takes the
input data and compresses it to produce a latent represen-
tation z ∈ Rd. The decoder takes the compressed data and
decompresses it to reconstruct the original data. The latent



representation must be of lower-dimension than the input so
that the AE cannot simply learn the identity function. The
encoder and decoder can learn more complex operations than
projection and linear combinations, and capture non-linear
features of the data. AE is normally trained to reconstruct
the input x by minimizing the objective function ‖x − x̂‖2
where x̂ is the output of the decoder. Variational Autoencoder
(VAE) is a generative variant of AE [17]. The training of
VAE is regularised to prevent overfitting and to ensure the
ability to generate new data in the latent space. While AE
encodes the input as a single low-dimensional vector, VAE
encodes it as a distribution over the latent space. The input
x is mapped onto a distribution Q(z|x) and the latent space
is sampled from it, i.e., z ∼ Q(z|x). The latent layer z of
the AE is replaced with a multivariate Gaussian distribution
including two sets of layers: one representing the mean
µz in each of the dimensions of the latent space and one
representing the variance σz such that z ∼ N (µz, σz).
Therefore, z is sampled from the distribution during the
training and passed to the decoder to generate x̂. VAE is
trained to minimize the evidence lower bound function which
is the sum of the AE reconstruction loss and the Kullback-
Leibler (KL) divergence between the latent distribution of
the input Q(z|x) and the prior P (z) ∼ N (0, I). Hence, the
objective function is given by

loss = ‖x− x̂‖2 +DKL(Q(z|x)‖P (z)). (1)

The KL divergence between two probability distributions
P and Q is a measure of the difference between the two
distributions and is defined as DKL(Q‖P ) =

∑
Q log Q

P .
We use the VAE to reduce the dimension of the training

data, as illustrated in Figure 2c, prior to the training of a
classifier network. The VAE is trained with the original and
augmented data while minimizing (1). While we sample from
the latent distribution z ∼ N (µz, σz) for training the VAE,
we use only the mean µz for generating lower-dimensional
data. Hence, the trained encoder is used to map labeled data
into a lower-dimensional space prior to using the Flip-U-Net.

It is important to note that, in AE, we have no con-
trol on the resulted distribution of the data in the latent
space. AE focuses on the reconstruction of the input while
compressing it at the bottleneck to a latent space in some
underlying and unknown distribution. Thus, AE provides no
guarantees on the organization of the latent space and is
highly dependent on the distribution of the input data and
on network architecture. Consequently, the latent space can
lack regularity and an exploitable structure. On the other
hand, VAE enforces the distribution of the latent space
to be close to a standard normal distribution. Hence, this
ensures regularization of the latent space and leads to better
performance in the classification task. During the training of
the VAE, the dimension of the latent space is forced to be
d < 15. Preliminary experiments have shown the ability of
VAE to properly embed the dominant features of the FMG
signals and ease the training of a classifier, compared to other
DR methods including AE. We include further analysis in the
experimental section.

E. Flip-U-Net

The augmented and dimension reduced data is now ready
for training a classifier. As presented in Section I, we propose
the use of a modified U-Net network termed Flip-U-Net.
The architecture of U-Net is symmetric and consists of
contraction and then expansion parts. The contraction part
consists of a repeated series of convolutions, rectified linear
units (ReLU), max-pooling and down-sampling operations.
Spatial information is lost in both convolutional and down-
sampling operations. Hence, the expansion is an inverted
path with convolutions and up-sampling operations. These
operations help in inverting and compensating for the loss
of spatial resolution. Furthermore, U-Net introduced skip-
connections between the contraction and expansion which
enable both parts to share information. Moreover, the benefit
of using convolutional layers in the U-Net is in the ability
to learn from sequential raw data directly without the need
for manual feature engineering by an expert.

Unlike U-Net, Flip-U-Net consists of expansion of the data
followed by contraction taking the shape of a flipped U as
seen in Figure 2d. The architecture starts with a bottleneck
which is the output vector of the VAE. Next, the expansion
consists of three blocks. Each block passes the input to two
1 × 3 convolution layers, batch normalization and a ReLU.
Each block doubles the number of filters and is followed
by a 1 × 2 up-sampling layer implemented as transposed
convolution. The contraction part is made of three blocks.
Each block passes the input through two 1 × 3 convolution
layers, batch normalization and ReLU, followed by down-
sampling. The down-sampling is implemented by a 1 × 2
max-pooling operation with kernel size and stride 2 assisting
in more accurate extraction of key features. Similar to the
U-Net, skip-connections connect between the two parts such
that each block in the expansion part is concatenated with the
corresponding one in the contraction part. Skip-connections
assist in recovering spatial information lost during the down-
sampling. In addition, they ensure that features learned in
the expansion are used in the reconstruction. Furthermore,
skip-connections provide additional paths for the gradient
and are often beneficial for model convergence. The above
architecture is symmetric such that the number of expansion
blocks is the same as of the contraction.

During training, sequential array batches of size ds × d
are fed into the Flip-U-Net, where ds is the number of
FMG samples included in the batch. When testing with a
single query sample, ds is equal to 1. Each signal at the
output of the contraction part is flattened into the bottleneck
and also concatenated with the input bottleneck through a
skip-connection summing up to an output of size ms. The
last section of the Flip-U-Net is a fully-connected neural
network. It consists of several hidden layers with ReLU
activations. Dropout is added solely at the dense layer before
the output layer. The width of the input is of size ms while
the output layer is of width m yielding class probabilities.
Next, we evaluate the performance of the above approach
for in-hand object recognition using an FMG device.



Fig. 4. Example of two object classes used in the data collection: (left)
drinking cups and (right) scissors.

III. EXPERIMENTS AND ANALYSIS

In this section, we test and analyse the proposed FMG
device and classification approach with multiple human
subjects and over a set of object classes. Videos of the data
collection, experiments and demonstrations can be seen in
the supplementary material.

A. Database and Descriptors

We have picked m = 11 everyday object classes in-
cluding: books (or notebooks), bottles, cellphones, forks,
hammers, drinking cups, plates, rulers, scissors, screwdrivers
and spoons. For each object class, five objects of the same
class were used in training. Figure 4 shows examples for the
scissors and hammer classes. Each object of the class has
different dimensions, topology and weight. The variety in
physical properties of the objects affect the FMG signals
when holding them and, therefore, provide data variance
during training. For testing, we have used 11 additional
objects (each from a different class) not used in the training.
Further description on all objects along with collected data
and code are available in a dedicated Git repository1.

We have included multiple human participants in the data
collection for training and testing. For training, we have
recorded a dataset based on k = 9 subjects including three
females and six males. For each subject, we measured the
forearm length L, wrist circumference D1, upper forearm
circumference D2, weight and height. Weight and height
were used to compute the subjects’ Body Mass Index (BMI).
Table I presents the mean and standard deviation of these
anthropometric measures for the subjects in training. Only
data collected from these nine subjects was used to train
various classifiers. On the other hand, data from 12 subjects
(five females and seven males) was used for testing. The 12
test subjects were not included in training in any way. The
test subjects were picked out such that they represent a large
anthropometric variance. A detailed list of anthropometric
measures sorted by BMI is also included in Table I.

In a training dataset collection session, the participants
were instructed to hold an object both in a task-based grasp
(e.g., grab the hammer or screwdriver by the handle) and
in any intuitive way he or she decides. The participants
freely manipulated their hands during the recording and
switched between various grasps of the object. Examples
of manipulating scissors and an hammer in different con-
figurations are shown in Figure 2a. It is estimated that each
object class was grasped with 2-3 main grasp taxonomies
as defined in [27]. For example, the bottles were held by
the body with a Medium wrap (22) grasp or by the cap
with a Tripod (14). The participants were also asked to

1https://github.com/eranbTAU/Robust-MUO

TABLE I
DETAILS OF PARTICIPANT DEMOGRAPHICS AND ANTHROPOMETRY

Gender Age D1 D2 L BMI
(mm) (mm) (mm) (kg/m2)

Training dataset - 9 human subjects
Mean 3 × F

6 × M
30.2 171.44 257.22 170.89 24.81

Std. 2.82 22.36 33.74 27.38 3.35
Subj. Testing dataset - 12 human subjects

1 F 24 155 223 159 19.95
2 F 28 165 250 170 21.30
3 F 26 150 215 155 21.34
4 M 32 180 270 180 21.46
5 M 38 170 250 180 21.55
6 F 50 145 215 165 22.65
7 F 35 153 240 163 23.31
8 M 30 180 280 180 25.31
9 M 32 165 275 175 26.00

10 M 29 175 265 182 28.09
11 M 25 199 319 209 29.21
12 M 27 170 268 178 32.30

perform other manipulations such as hitting a polyethylene
foam cube with the hammer and cut paper with scissors.
Hence, the data collection process included a large number
of different grasps and manipulations for each object. In
between episodes, the FMG device was taken off and re-
positioned in slightly different variations. In conclusion, data
was recorded by each participant on all objects of the 11
classes, yielding M = 55 episodes. Each episode includes
Ne = 10, 000 samples recorded in 200 Hz. Consequently,
the non-augmented training set Φ is comprised of N =
4, 950, 000 labeled data points from various human subjects,
objects, grasps and manipulations.

B. Data processing and model training

The collected training set is augmented as described in
Section II-C. Hence, for each recorded data point we generate
augmented variants and store them all together. All original
and augmented training data are then used to train the VAE.
Hyper-parameters optimization of the Flip-U-Net and VAE
has produced the best loss value with a latent space of
dimension d = 5. The reduced data and its corresponding
labels are used to train the Flip-U-Net. The hyper-parameters
optimization yielded a network of 15 convolutional layers
and five fully-connected layers (Figure 2d). Thus, the total
number of trainable parameters is 163,751. We used the
ADAM optimizer along with a cross-entropy loss function
with adaptive learning rate initialized at 0.000142, L2 regu-
larization of 0.03, batch size of ds = 64 and 30 epochs.

C. Model Evaluation

Using the training data, we have trained the VAE and Flip-
U-Net as described above. Furthermore, we have conducted a
comparison to other common classifiers, including: Nearest-
Neighbors, Naive Bayes, Decision Trees, Random Forests,
Support Vector Machines (SVM) with a linear kernel, Linear
Discriminant Analysis (LDA) [28]. In addition, we include
results for a simple ANN (115,715 trainable parameters)
and an ANN classifier (130,499 trainable parameters) trained
similarly to [16]. In the latter case, a signal is formed by the
concatenation of the mean and standard deviation of a sensor



TABLE II
CLASSIFICATION SUCCESS COMPARISON FOR DIFFERENT CLASSIFIERS

Success rate (%)
w/o Aug. w/o Aug. w/ Aug.

Classifier w/o VAE w/ VAE w/ VAE
Nearest Neighbors 70.12% 78.51% 80.36%
Naive Bayes 74.57% 80.99% 81.12%
Decision Tree 52.55% 63.56% 69.59%
Random forest 86.63% 75.31% 75.82%
SVM 65.17% 79.83% 82.72%
ANN 84.33% 77.91% 78.18%
LDA 41.15% 68.28% 71.39%
Mean-Filter + ANN [16] 77.82% - -
Flip-U-Net 88.91% 92.45% 94.83%

Fig. 5. Confusion matrix for the Flip-U-Net with data augmentation and
dimensionality reduction using VAE, with a total success rate of 94.83%.

measurement along a sliding window of width w = 100 prior
to training a fully-connected ANN classifier.

All classifiers were trained with the same data. Table II
reports the classification success rate for these classifiers
over the test data with and without VAE and data aug-
mentation. Results show the importance of the data aug-
mentation and VAE. These steps improve accuracy in most
cases. Overall, it is clear that the Flip-U-Net approach along
with augmentation and VAE outperforms standard methods.
Figure 5 presents the confusion matrix for the Flip-U-Net
classifier with data augmentation and VAE. Each different
data augmentation technique provides some improvement to
robustness. Individual analysis for each technique has shown
relative improvement as low as 0.43% for the Magnitude-
Warping and as high as 1.49% for the Rotation, this with
respect to the 92.45% success rate without any augmentation.

TABLE III
CLASSIFICATION SUCCESS COMPARISON FOR DIFFERENT DR METHODS

Success rate (%)
DR method w/o Aug. w/ Aug.
PCA 61.45% 65.24%
T-SNE 80.77% 84.27%
AE 88.89% 91.01%
VAE 92.45% 94.83%
Encoder 89.07% 91.63%

Grasps of several objects during experiments by two
test subjects can be seen in Figures 6-8 along with model
certainties for the predicted objects. Note that some grasps
of different object classes may look similar. For example,
the grasps of the hammer and screwdriver in Figures 6a
and 8b, respectively, are both Adducted thumb grasps [27].
However, weight and center-of-mass location have a sig-
nificant effect on the FMG signals along with the object’s
geometry. Nonetheless, other object classes, such as the
bottle and drinking cup or the notebook and plate, share some
grasp taxonomies (Medium wrap and Parallel extension,
respectively) that are harder to distinguish. Hence, they have
larger classification errors as seen in Figure 5. Figure 1
(and the supplementary video) presents demonstrations of
complementary assistance of a collaborative robotic arm
acting based on FMG observations of the objects held by the
user. Real-time recognition of the object is performed at a
frequency of 50 Hz. Hence, an object can be identified almost
instantly when grasped. Overall, the experiments demonstrate
the ability of the classifier to accurately recognize objects
based on different grasps.

We analyze and compare the use of other DR methods
prior to training the Flip-U-Net, including the following
methods: Principle Component Analysis (PCA), t-distributed
Stochastic Neighbor Embedding (T-SNE), AE and VAE. We
also include a baseline in which the Encoder of the VAE
is directly connected to the Flip-U-Net and trained with it
to minimize classification error. Table III presents results for
comparison with and without data augmentation. Evidently,
VAE along with augmentation provides best accuracy.

Fig. 6. Grasps of an hammer by subjects 4 (a-c) and 9 (d-f). The classifi-
cation model certainties p(hammer) about the object are (a) 86.47%, (b)
97.29%, (c) 82.42%, (d) 93.1%, (e) 93.29% and (f) 93.36%.

Fig. 7. Grasps of a drinking cup by subject 4. The classification model
certainties p(cup) about the object are (a) 98.65%, (b) 95.71%, (c)
85.43%, (d) 96.77% and (e) 92.96%.

Fig. 8. Grasps of a screwdriver by subject 9. The classification model
certainties p(screwdriver) about the object are (a) 94.92%, (b) 93.05%,
(c) 90.66%, (d) 94.06% and (e) 93.78%.

In the next analysis, we observe the multi-user robust-
ness property with regards to data size. Recall that data
was acquired by recording nine participants for all objects
yielding N = 4, 950, 000 data points. Hence, we arranged
all data sequentially as recorded and without any shuffling.
In order to observe classification success rate with regards
to data size, the entire training procedure (i.e., augmentation,
VAE and Flip-U-Net) was repeatedly trained for a varying



Fig. 9. A heat-map of the classification success rate (%) with regards to
the number subjects and the number of recorded data points per subject.

Fig. 10. Mean success rate with regards to the number of classes.

number of subjects and data points per subject. A heat-
map of the success rate over the test data can be seen
in Figure 9. The classification success rate improves with
the increase of human subjects and data points per subject,
reaching 94.83% success rate with N points. As expected,
additional participants in the training data yields a more
robust classifier. Additionally, Figure 10 presents the mean
success rate with regards to the number of object classes.
Results show a moderate decline in accuracy when increasing
the number of classes leading to 94.83% with 11 classes.

D. Feature Importance

We now explore the importance of the FSR sensors
in the device on prediction accuracy. Permutation feature
importance is a common method to evaluate the impact
of each feature in an ANN [29]. We measure the increase
in the prediction error after permuting the values of each
single feature in the validation data separately. The score
is the accuracy reduction resulting from the permutation
of a sensor’s values and is computed according to ei =
q−qi
q × 100%, where q is the success rate of the non-

permuted model. qi is the success rate when feature i is
permuted. The results of feature importance evaluation are
illustrated in Figure 11 along with sensor placements. The
relative accuracies indicate a relatively strong dependence
on the lower forearm sensors. All sensors along the arm are
significant to a robust and accurate object recognition.

E. Correlation Analysis

We wish to analyze the accuracy of different test subjects
with regards to anthropometric measures. Table IV presents
the classification success rates for each individual test subject
and for each gender. We have also included two metrics
of signal strength: mean of all signals over all sensor
measurements made by the subject and mean of the maximal
signal measurements over all sensors. Signal measurements
are voltage values normalized to be within [0, 1].

Table V presents the Pearson correlation (r) coefficients
between demography and anthropometric measures, and clas-
sification success rate. Results show that forearm measures

i ei (%)
1 10.98
2 3.61
3 4.05
4 6.49
5 19.51
6 8.37
7 3.26
8 12.92
9 16.50

10 21.83
11 11.01
12 8.49
13 20.66
14 13.78
15 12.14

Fig. 11. Illustration of the sensor locations and importance score computed
with the permutation feature importance method.

TABLE IV
CLASSIFICATION SUCCESS RATE OF THE HUMAN TEST SUBJECTS

Subject Success rate (%) Signal Strength
Mean Mean-Max.

1 92 0.311 0.61
2 95 0.231 0.66
3 95 0.264 0.73
4 94 0.376 0.75
5 95 0.318 0.76
6 92 0.231 0.55
7 93 0.288 0.59
8 97 0.410 0.85
9 94 0.360 0.66

10 96 0.273 0.71
11 98 0.405 0.79
12 97 0.45 0.79

Females 96 0.265 0.63
Males 93 0.370 0.74

(i.e., D1, D2 and L) and BMI have relatively high impact
on the accuracy of the model. This is assumed to be because
of better attachment of the sensors to the skin for subjects
with larger forearms. Gender and age have low to medium
correlation to model accuracy since they both have some bias
with regards to anthropometric measures. The male subjects,
on average, have a much higher BMI and are younger.
Furthermore, subjects with higher signal strength are more
likely to receive accurate predictions.

F. Anthropometric-based Model Tuning

The above results show accuracy correlation to anthropo-
metric measures. Hence, we now test the ability to fine-tune
the model based on one measure. We take the BMI measure
as a test case. Given a test subject, we retrain the model with
data from a train participant of similar BMI. The retraining is
done with a learning rate of 10−5 and 30 epochs. Figure 12
shows the accuracy gain achieved for four test participants
with regards to the BMI difference ∆BMI . ∆BMI is the
difference between the BMI of the test participant and of the
train subject whose data was used for retraining. Accuracy
gain was evaluated using the test data of the corresponding

TABLE V
CORRELATION (r) BETWEEN ANTHROPOMETRY AND ACCURACY

Measure r Measure r

Gender 0.65 D1 0.78
Age -0.49 D2 0.75
Mean-Max. signal strength 0.87 L 0.72
Mean signal strength 0.59 BMI 0.70



test participant and was averaged over 10 training trials.
Results show strong negative correlation between accuracy
gain and BMI similarity. In other words, accuracy is better
improved with data from a subject who has similar BMI.
Therefore, the model can be tuned to a particular subject
based on his or her BMI measure.

Fig. 12. Accuracy gain of a tuned model for subjects 4, 6, 7 and 9 with
different train subjects and with regards to ∆BMI .

IV. CONCLUSIONS

In this paper, we have proposed an end-to-end approach for
robust multi-user object recognition using a wearable FMG
device with application in HRC. We introduced and evaluated
a novel deep learning architecture called Flip-U-Net. Results
show that Flip-U-Net along with data augmentation and
VAE can achieve better performance than standard meth-
ods. Moreover, we examined the influence of each sensor
of the FMG device on the accuracy. Correlation analysis
have shown relations between accuracy and anthropometric
measures of the test subjects. While the model by itself
provides high accuracy, the BMI measure can be used as
a selection criterion for fine-tuning the model to a new user.

While the approach provides fast and accurate predic-
tions of grasped objects, it requires sufficient data from
human subjects and long model training time. Furthermore,
transition between objects in real-time may provide faulty
predictions. Future work should address the identification
of these transitions to increase certainty. This could also
include information from other sensors. Future work may
also include using network architectures that take sequential
data. In addition, Conditional VAE could be used to fine-tune
a model for a new user and generate synthetic training data
with bias towards some anthropometric measure.
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