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Haptic-based and S F/(3)-aware Object Insertion
using Compliant Hands

Osher Azulay, Maxim Monastirsky and Avishai Sintov

Abstract—Object insertion is primarily studied using rigid
robotic hands. However, these may have difficulties overcoming
spatial uncertainties originating from an uncertain initial grasp.
Compliant hands, on the other hand, can cope with SF(3) uncer-
tainties and adapt to the environment upon contact. Nevertheless,
contact forces may contribute additional uncertainties and lead to
failure if not controlled properly. In this letter, we take inspiration
from human insertion and study how haptic glances with com-
pliant hands during contact can provide valuable information
regarding object state. Using a force/torque sensor, we show
that a haptic glance based on excitation of finger perturbations
can provide accurate contact localization and indication of a
successful insertion. With such insight, we propose an online
learning scheme for general precision control of contact-rich
object insertion. A deep residual Reinforcement Learning (RL)
policy leverages the contact dynamics of the compliant hand to
cope with SE(3) uncertainties. Several experiments of precision
insertion tasks with various objects and grasp uncertainties
exhibit high success rate and validate the effectiveness of the
approach.

Index Terms—Kinesthetic, pose estimation, haptic glance.

I. INTRODUCTION

AILY life activities require interaction with the environ-

ment through contact. For a robot to perform real-world
tasks, it must be able to work in unstructured contact-rich
environments. Insertion is a common problem that requires
dealing with contacts and has been extensively researched [1].
The insertion, or peg-in-a-hole, operation occurs in various
tasks such as assembly [2] and dense packing [3]. While
humans can perform insertion assembly with relative ease,
achieving high-precision and robust insertion in unstructured
environments remains a challenge for robotic systems.

The vast majority of work on robot insertion has been
carried out by rigid hands. Rigid hands, however, may have
difficulty coping with uncertainties originating from erroneous
object pose estimation and environment perception. In partic-
ular, accurate relative poses of hand-object and object-hole
are usually not available in real-world applications. There-
fore, compliance of the robotic arm has been incorporated
to enable it to mechanically adapt to the environment upon
contact while complicating the hardware [5]. Contrary to
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Fig. 1. A Model-O [4] Underactuated Compliant Hand (UCH) inserting
an object into a hole using haptic glances from an F/T sensor. Due to
the compliance of the hand, the method is able to consider SFE(3) pose
uncertainties of the object including roll « and pitch ~ tilt angles.
artificial compliance solutions, an Underactuated Compliant
Hand (UCH), seen in Figure 1, is a grasping mechanism
that inherently incorporates compliance [6], [7]. Consequently,
they have gained popularity in recent years due to their low-
cost and ability to maintain a stable grasp with open-loop
control. In addition, UCH have been shown efficient for in-
hand and precise manipulation [8], [9]. However and due to
their compliant nature, large pose uncertainties of the object
with regards to the hand exist [10], [11]. Consequently, visual
perception is the leading approach to acquire pose estimation
of the object between the fingers [12]-[14]. Hence, the sole
use of UCH for insertion tasks was based on an RGB-Depth
camera [15]. The work has proposed a vision-driven compliant
method using depth-based pose estimation to control planar
insertion with a UCH.

A complete insertion solution solely based on visual per-
ception may be limited in an unstructured or cluttered envi-
ronments. In addition, visual perception might provide limited
accuracy for a tight-tolerance insertion problem [16]. There-
fore, extensive haptic work has focused on kinesthetic- or
tactile-based exploration at the final insertion phase given an
approximated position of the hole acquired from a camera. The
common use of kinesthetic haptics is based on a Force/Torque
(F/T) sensor mounted between a rigid hand and arm (i.e.,
wrist) [16], [17]. In tactile-based insertion, touch sensors
on the fingertips of the hand provide embedded information
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Fig. 2. Tllustration (top) of the proposed workflow for insertion with an Underactuated Compliant Hand (UCH). An observation is acquired through a haptic
glance where a set of F/T measurements are taken during initiated contact with the hole. Simple force control (bottom right) is used to expedite the training
of a Reinforcement Learning (RL) policy (bottom left) to perform the task. An insertion classifier checks, based on the haptic glances, whether the object

was successfully inserted.

regarding hand-object and object-environment contacts [18],
[19]. While tactile sensors are required to be integrated and
sometimes customized to the hand itself, standard F/T sensors
are off-the-shelve devices frequently present on robotic arms
and independent of the hand type. The majority of prior work
on insertion considered either only the position of the object
or including also just the planar angular alignment (i.e., yaw
angle) with the hole. In particular, no work has considered the
entire SFE(3) pose of the object with respect to the hole using
only F/T sensing.

State-of-the-art in haptic-based insertion is all based on rigid
hands. Hence, the insertion problem by UCH solely based
on haptics has never been addressed. For UCH, however,
integrating tactile sensors would make it harder to modulate
and replace fingers for different tasks in low-cost open-source
hardware such as in [4] if tactile sensors are to be integrated.
On the other hand, mounting an F/T sensor between the arm
and hand is an easy task. Compared to vision, F/T sensing pro-
vides also implicit information regarding object-environment
surface quality. However and due to compliance, the system
would be much more sensitive to object perturbation due to
contact with the environment than rigid hands. Consequently,
load attenuation of the springs along with object pose pertur-
bations may complicate F/T signal processing. Nevertheless
and as demonstrated in previous work [15], [20], compliance
provides assistance in insertion and motivates the use of UCH.
UCH which was demonstrated to be efficient in various tasks
has yet to be explored for insertion while including: spatial
position and orientation deviations of the object relative to the
hole, and F/T-based sensing.

In this letter, we tackle the problem of F/T-based insertion
with UCH while observing the ability of the hand to correct
SE(3) deviations. Rather than having a soft or compliant robot
arm, which can be of high cost, a low cost compliant hand
is easier to be used on any robotic arm. First, we explore the
notion of an haptic glance in such system. A haptic glance
is a robot initiated object contact in the vicinity of the hole
in order to gain information regarding the instantaneous pose
(i.e., position and orientation) of the object relative to the hole.
We show that finger perturbations during contact with the hole
is the most effective and safe haptic glance. The haptic glance
is also shown to be able to classify whether the object was
successfully inserted. Next, we use haptic glances to propose a
data-efficient approach to train a Reinforcement Learning (RL)
policy for insertion (Figure 2). The training involves a Direct
Force Controller (DFC) to guide and expedite the learning.
Curriculum learning is also utilized for training from easier to
more complex objects.

To the best of the author’s knowledge, this is the first attempt
to perform robotic insertion with a UCH solely based on haptic
F/T sensing. In addition and contrary to previous work with
F/T sensing, this work considers SFE(3) deviations of the
object with respect to the hole. Hence, the contribution of
this work is novel RL-based framework to cope with SE(3)
uncertainties and align the object into the hole. The framework
includes a haptic glance that utilizes the ability of the hand
for contact localization and insertion classification. A simple
but effective controller is used to reduce data sampling. The
method can generalize to novel objects of different shapes and
hole clearances.
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TABLE I

STATE-OF-THE-ART COMPARISON FOR ROBOTIC INSERTION
Work RL Vision F/T Tactile R\C!
Van-Wyk et al. [27] X X v v R
Lee et al. [25] v v v X R
Ding et al. [24] v X v X R
Beltran et al. [16] v X v X R
Morgan et al. [15] X v X X C
Cui et al. [28] X X X v R
Kim et al. [19] v X X v R
Ours v X v X C

IR\C denotes Rigid or Compliant hands.

II. RELATED WORK

Several early studies suggested the use of passive hardware-
based compliance, where a mechanical device, termed Remote
Center Compliance (RCC), is positioned between the arm and
hand to aid the insertion [20]. By virtue of its passive compli-
ance, the RCC enables the gripper to move perpendicular to
the peg’s axis and rotate freely to reduce resistance. However,
RCC is less effective with high-precision assembly [21]. On
the other hand, active compliant methods, where some force
control is employed, are widely used to overcome uncertainty
[22], [23].

Table II provides a comparative summary of state-of-the-art
work on insertion methods. Recent work used Deep Reinforce-
ment Learning (DRL) along with an F/T sensor and active
compliance to drive a peg into a hole [16]. Similarly, an F/
T sensor was used to insert an object held by a parallel gripper
based on a learned dynamics model [24]. Another work fused
F/T sensing and RGB images to improve sample efficiency in
policy learning [25]. The latter two, however, focused only on
positional localization and did not consider angular deviations
with respect to the hole.

Contrary to F/T-based insertion which is extrinsic to the
hand, tactile sensors are embedded within the fingers. Optic-
based sensors were embedded on a parallel gripper to estimate
contact location in insertion of small parts [18]. Similar
sensors were later used in tight box-packing [26] and general
insertion [19]. A different approach equipped a multi-finger
hand with F/T sensors at the tip of the fingers [27]. As
discussed above, tactile sensors are less appealing to UCH.
Therefore, the use of an extrinsic F/T sensor with UCH is
explored in this work.

III. METHOD
A. Problem formulation

We consider a robotic arm equipped with an F/T sensor
and a three-fingered UCH. While the UCH is grasping the
object, as seen in Figure 2, the system will attempt to insert
the object into a near-by hole under pose uncertainties. The
hole is in the shape of the object with some clearance €. The
state of the object s € SE(3) includes its position (x, y, z) and
orientation (v, 7, 6) relative to the hole (Figure 1). Prior work
with rigid hands and F/T sensing only considered the SF(2)
of the object-hole (i.e., position (z,y) and yaw angle 6). In
UCH, however, the roll o and pitch v can be uncertain due
to the initial grasp or involuntary changes originating from

contact forces and hand compliance. Explicit access to the
true state is not available. The system can only acquire F/T
measurements b € B for B C RS. Hence, an observation
o, € O at time ¢, where O C B x ... x B, is a set of F/T
measurements during an initiated temporal contact.

While correction of x, y and € in s requires planar actions
of the hand by the arm, correction of o and ~ requires
either spatial rotation of the arm or finger manipulation. The
former may not be possible in a cluttered environment and
the latter requires planned in-hand manipulation which is not
in the scope of this work. Nevertheless, it is hypothesized
that learning planar motion of the object on the hole surface
could utilize compliance to correct object roll and pitch tilts.
Hence, let a € A for A C R3 be a continuous robot
action displacement. Action a = (Ax, Ay, AA)T includes
the required planar position (Axz,Ay) and yaw angle Af
changes. The insertion goal is, therefore, to align the object
and insert it into the hole under the following assumptions:
No prior knowledge of the object shape nor the target hole
are available. Yet, the shapes of the object and target hole are
assumed to match; State-of-the-art vision system can roughly
estimate the pose of the hole up to few millimeters and
degrees tolerance [16]; The object was previously grasped
with uncertainty regarding its SE(3) state; The final precise
insertion would solely be based on F/T feedback. Due to the
above assumptions, the target location of the hand-arm system
for object-hole alignment is not known.

B. Haptic Glance for contact localization

Since the true state s of the object is not known, the robot
makes an observation o. An observation is, in fact, an haptic
glance [29] where contact is initiated with the environment in
order to either explicitly approximate the state or evaluate the
residual a with respect to the hole towards alignment with it.
The core modality in a haptic glance is F/T sensing.

Taking inspiration from human motion during insertion, we
have investigated three multi-phased haptic glance primitives.
The primitives are based on either arm or hand motion. Nev-
ertheless, they all start from a push-down phase of lowering
down the grasped object towards the surface of the hole until
reaching a normal force threshold indicating contact. A single
F/T measurement is ambiguous for accurate state estimation.
Hence and once in contact, the haptic exploration phase can
be conducted across a certain time frame while collecting
diverse F/T data. We investigate the use of the following three
exploration primitives.

Vertical press (Figure 3a). The baseline exploration motion
would be to keep pushing down the object towards the surface
of the hole while increasing and decreasing the force exerted
by the arm [30]. Due to intersection with the hole along with
the hand compliance, the object would slightly tilt accordingly
and may provide informative F/T signals.

Arm tilts (Figure 3b). Inspired by [19], [24], object tilting is
deliberately exerted by the arm in order to sense the edge of the
hole. Hence, the arm is tilted back and forth to three directions
with respect to the surface normal. The center of each tilt
is approximately the contact point with the hole. While we
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Fig. 3. Three types of haptic glances: (a) vertical press, (b) arm tilts and (c)
finger perturbations.

acknowledge that arm tilts may not be possible in cluttered
environments, we wish to investigate performance.

Finger perturbations (Figure 3c). While the previous haptic
glance primitives were based on arm movements, here we
exploit the fingers ability to press against the object. Each
finger, in its turn, would gradually increase contact force with
the object. Due to finger compliance, the object would slightly
move and tilt based on its position relative to the hole and
provide corresponding F/T measurements.

Tilting the entire arm in confined spaces may not be possible
due to the risk of collision. Moreover, it is hypothesized
that the finger perturbations approach would be safer from
object jamming than arm tilts. In addition, finger perturbations
slightly move the object arbitrary on the plane with some
probability that it may align with the hole. When aligned and
due to compliance, the object would passively slide inside.
Hence, this primitive is expected to have a higher success
rate. Consequently, the use of only the fingers to press on the
object is safer, easier and more appealing. It is important to
note that all three motion primitives passively exploit hand
compliance. During the haptic glance and due to the initial
load phase, the hand acts as a pressed spring. Hence, the hand
is more sensitive to the explorative motions described above
which are captured by the F/T sensor.

C. Haptic Glance Encoding

The above haptic glances provide contact-rich data across
some constant time frame. In particular, a haptic glance
starting at time ¢ is a temporal set of N +1 F/T measurements
0; = b(s.¢4 n]- Recording with high-frequency would provide
rich temporal data while may also contain repetitions. Hence,
training a model with the entire data in o; may be redundant.
Therefore, we encode the temporal data by down-sizing [26].
The down-sizing is done by averaging K consecutive bins
along the haptic glance set. Consequently, the encoding now
yields a smaller set o, € O of K samples. Haptic glance o
is now the new observation for contact localization. The same
encoding applies for all three exploration primitives.

D. Insertion success identification

Prior to training and testing insertion, the system must
first identify successful insertions. As opposed to rigid hands
and due to compliance, an object grasped by a UCH can
slide into the hole without lowering the hand by the arm.

Hence, it is required to identify successful insertion during
and in between haptic glances. For such, we collect 2M haptic
glances {0;}?* where M glances are when the object is
inserted and M glances are in contact with the surface of the
hole. Each glance o;, is also labeled with d; = {in,out}
indicating whether the object is in the hole or not. This is
used to train a Temporal Convolutional Network (TCN) [31]
classifier that provides the probability of whether the object
was successfully inserted and the episode can be finished.

E. Direct Force Control

We propose a naive force control to correct the position
of the object towards the hole. The Direct Force Control
(DFC) is proposed as a position insertion baseline and used
also for augmenting the DRL as to be discussed below. F/T
measurements, while pushing down the object on the hole,
can provide implicit information regarding the planer direction
towards to the hole. In other words, during the push-down
phase, the object would slightly tilt approximately towards the
center of the hole. Observing only the measured force, such
tilt would be sensed by the F/T sensor as a tangential (i.e., in
the x —y plane) reaction force opposite to the tilting direction.
Hence, the position can be corrected in direction opposite to
the measured force.

In this control, we consider only the observation at the time
frame of the push-down phase. As single force measurement
can be ambiguous, we take the mean f; € R? of the measured
forces from haptic glance o; within the push-down phase.
In other words, force f; is the mean of the measured forces
projected onto the x — y plane (Figure 2). Assuming point
contact, static motion and some object overlapping with the
hole, an action proportional to f; would drive the object
towards the hole. Therefore and given an observation f;, a
naive planar insertion controller 77 is of the form

Wf(ft) = 7Kpszt~ (1)

where K, > 0 is a diagonal gain matrix. Matrix R,(A#f) €
SO(2) is the z-axis rotation correction if some orientation
action Af was performed after the observation. The position
control action is, therefore, a; = (Ax, Ay)T = 7p(f;). It is
noted that F/T measurements in tilting may be ambiguous
due to complex edge shapes. In addition, the DFC does not
consider nor try to correct orientation misalignment. Hence, if
the object is not close to alignment with the hole, we expect a
low insertion success rate. Therefore, we next discuss SL and
RL approaches for insertion. Nevertheless, we use the DFC to
make RL more sample efficient.

F. Supervised learning model

A haptic glance includes an implicit and complex spa-
tiotemporal signature that is difficult to model analytically [1].
Therefore, we begin by training an SL model f; to directly
estimate the contact error e; € R3 given a haptic glance o,
i.e., & = fs(o;) where & is the approximation of e;. The
approach is inspired by object insertion with a parallel gripper
and tactile sensing proposed in [26]. The SL model is trained
by collecting Z pairs of observations and labels {o;,e;}Z ;.
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During inference upon a haptic glance, an SL-based action is
given by

ag = —€ = —fsl(Ot)~ 2
Since the observation is comprised of temporal data, we use
the TCN architecture for regression of sequential data. The
TCN model is used to implement fy; and predict the state
error in real-time. However, the collection of data to train the
SL model is done randomly and may be inefficient. RL, on the
other hand, can provide a sample efficient policy by directing
the learning along with optimizing the required haptic glances.
In addition, the SL model cannot correct involuntary deviations
in tilt angles a and ~. Unsupervised RL, discussed next, can
implicitly observe these deviations from F/T signals and act
to correct them.

G. Deep reinforcement learning policy

As discussed above, explicit state information is not avail-
able. Therefore, the system is assumed to be a Partial Observed
Markov Decision Process (POMDP). The POMDP can be for-
mally defined by the tuple (S, 4,0, P, Z,R,d) where P, Z
and ¢ are the set of conditional transition probabilities, the set
of observation probabilities and discount factor, respectively.
Map R : S x A — R is the reward function. In POMDP, The
next state s;+1 € S depends solely on the current state s; € S
and desired action a; € A according to latent environment
transition dynamics P(s¢+1|s¢,a;) while receiving a reward
r; € R. While the true state is not available, an observation
is provided to the agent in the form of a haptic glance from
O. Therefore, the agent takes a haptic glance 0,11 € O when
reaching the next state s;11 with probability Z(0¢41|S¢+1)-
RL would, therefore, aim to learn a policy mg(a|o;) that
maximizes the expected return E{Zi 00'r ), where ¢ is
the vector of model parameters and H is the horizon. By
modeling the system as a POMDP and using RL, the agent
has the potential to estimate the true state error and align the
object within a sequence of actions rather than applying greedy
actions, such as with the SL in Section III-F.

An episode of the RL framework consists of one or more
haptic glances. At each haptic glance o, the robot explores the
current state. In addition, the policy also includes the previous
action a;_; along with the observation o; to provide implicit
information about the contact configuration. Consequently,
policy mg(0;,a;,—1) is trained, through a set of episodes, to
apply actions that would align and insert the object to the
hole with a minimal number of haptic glances. Therefore, the
reward

re = —|eg| + 7 (3)
at time ¢ penalizes for large planar alignment errors |e¢| and
rewards for successful insertion such that r; equals either A >
0 or O for successful and failed insertion, respectively. Instead
of F/T observation o;, during training an asymmetric input is
used in the critic model, directly feeding the true contact error
e; and the action from the actor model. It has been shown that
using asymmetric input can significantly improve performance
on real robot learning [32].

Fig. 4. Seven Curriculum Learning (CL) levels for five training objects.

H. Deep Residual Reinforcement Learning

The learning process for a real robot may be hard, time
consuming and requires safe exploration. In particular, learn-
ing policy w4 with no prior information may require a large
amount of samples. In order to expedite the learning and
provide some sample efficiency, it is proposed to bootstrap
the learning of the positional alignment with the DRC policy.
Hence, the position insertion action consists of two compo-
nents. First, the DRC policy 7; provides a rough approxi-
mation of the positional correction. Then, RL with reward (3)
learns implicit residual correction of the DRC. In other words,
the DRC policy 7y provides a prior to the RL policy 7.
The final Residual RL (ResRL) control policy is, therefore, a
superposition of both control signals and is given by

ar = Ff(ft) + 7r¢(ot,at_1). (4)
While policy 7y is a naive approximation for positional
alignment, policy w4 observes its behaviour and learns to
correct it. Note that the DFC only outputs positional action
a; = (Axz, Ay). Thus, action (4) is related only to position
control while orientation action is chosen by 7y (0¢, at—1).

1. Curriculum Learning

Since sample efficiency is a key factor for real robot
learning, a Curriculum-based Learning (CL) approach is also
explored to further accelerate the the training. In the absence
of a curriculum, the robot simply selects random object-hole
pairs from episode to episode. In a curriculum strategy, the
training is introduced with data in an organized order from
easy samples to hard ones. In other words, more difficult
aspects of a problem are gradually introduced so that the model
is always challenged.

Training of the RL policies includes five primitive objects
for generalization: cylinder, cuboid, square prism, hexagonal
prism and elliptical cylinder. Learning to insert a cylinder or an
hexagonal prism, for instance, is much simpler than a cuboid
since they are less sensitive to rotational misalignment [30].
In addition, learning to insert a cylinder into a square hole
is easier then to a cylindrical one. Hence, a CL strategy is
designed for seven levels as illustrated in Figure 4, starting
from an easier level and scaling-up the complexity. Once a
success rate threshold is reached for the current level, the robot
advances to the next level.
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Fig. 5. The experimental setup consisting of an OpenMANIPULATOR-P
robot arm, a Model-O UCH, the FT-300 F/T sensor, five training objects and
their corresponding holes, and five testing objects (including the gum box
within the hand).

IV. EXPERIMENTS

A. Setup

Robotic hardware. An experimental setup was built to au-
tomate the training and testing of the insertion. The setup, seen
in Figure 5, consists the three-finger Model-O UCH [4]. Each
finger of the UCH has two compliant joints with springs where
a tendon wire runs along its length and is connected to an
actuator. The UCH is mounted to an OpenMANIPULATOR-P
arm equipped with a Robotiq FT-300 F/T sensor. The system
is operated by the Robot Operating System (ROS). During
the experiment, data stream from the F/T sensor is available
in 100 Hz. Velocity of the arm during insertion attempts is
set manually such that inertial forces can be neglected. The
motion velocity is similar for all objects and experiments.

Objects and holes. Five 3D printed objects are used for
training including a cylinder, a cuboid, a square prism, an
hexagonal prism and an elliptical cylinder. A matching hole
is paired to each object with a clearance of ¢ = 1.5mm. An
additional five novel objects not included in the training are
used for testing the policies and include a gum box, wire roll,
hollow box, star prism and a flower shaped prism. The flower
shape prism is from a shape sorting kids toy and the robot
must insert it to a matching hole on a puzzle board. Other
test objects are fitted into the existing holes of the training
objects and some have tighter clearance. Only for ground-truth
analysis of object inclinations, a camera mounted at the base
of the UCH observes fiducial markers positioned on top of the
objects.

Uncertainties. It is assumed that, in a real-world scenario,
visual perception would provide a noisy pose estimation of
the hole. To simulate this, the pose error of the object is
randomly sampled from a uniform distribution. In particular,
the translation and orientation errors are uniformly sampled
from the range x,y ~ [—15 mm, 15mm] and 6 ~ [—12°,12°],
respectively. State-of-the-art in object insertion reported up to
similar values of initial errors [16], [30].

SL model. To implement f,; by SL, a TCN model is

TABLE II
PERFORMANCE OF SL POLICES
Prmi Object Cyl. H.ex. E!lip. Sql.lare Cuboid
rimitive prism  cylinder prism
Mean Err. Pos. 4.0+0.6 (mm); Orien. 3.8°4+0.9°
Vertical press [30] Success 87% 70% 33% 23% 16%
# Glances 4.1 4.0 2.8 22 2.6
Mean Err. Pos. 3.1+0.5 (mm); Orien. 3.2°40.6°
Arm tilts [19], [24]  Success 80% 87% 90% T7% 63%
# Glances 3.5 4.7 3.8 5.7 4.8
Mean Err. Pos. 2.740.5 (mm); Orien. 3.3°+0.5°
Finger perturb. Success 93%  93% 93% 83% 67%
# Glances 4.4 53 4.9 4.3 53

trained for each primitive. Hyper-parameters of the model were
optimized to the following architecture. We adopted the TCN
implementation from [31] seen in Figure 2 (bottom left) with
three residual blocks of 128 channels each. The TCN takes
as input the observation o; and processes it through a series
of residual blocks, following by a Fully-Connected (FC) layer
and Tanh activation. The Adam optimizer was used along with
the mean squared error loss function.

Insertion classifier. To implement the insertion classifier,
the same TCN architecture described above was used followed
by a Sigmoid output instead of the Tanh activation. The
classifier was trained with the binary cross-entropy loss.

RL policy. For our underlying RL algorithm, we imple-
ment the Twin Delayed Deep Deterministic policy gradients
(TD3) [33]. TD3 was found to be stable, sample efficient
and requires few little parameter tuning. Additionally and
to further improve sample efficiency, Prioritized Experience
Replay (PER) [34] was used. PER alternates between random
sampling experience from a buffer and prioritizing experience
by replaying important transitions more frequently. For our
actor policy, we used the same TCN based architecture of the
SL model, to output a 3 unit embedding vector €;. Next we
concatenate €; and ay_; and process it by 2 FC layers with
256 neurons each followed by a Tanh activation. For the critic
network, we used a 3 layered FC-NN with 128, 128 and 64
neurons each.

Policy evaluation. Policies are evaluated separately on the
train and test objects. Each object is tested for 30 episodes
yielding 150 insertion episodes for both the train and novel
test objects. If the system fails to insert an object within 15
haptic glances or the object reaches farther than 25 mm\deg
from the hole, the episode is declared as failed. Videos of the
experiments can be seen in the supplementary material.

B. Contact localization through haptic glances

We begin by analysing the accuracy of contact localization
with the three haptic glance primitives described in Section
III-B. For each primitive, training data is collected by record-
ing 600 haptic glances per training object yielding a total
of 3,000 observations. An additional 600 test samples were
collected in a separated session and were not included in the
training set. Automated data collection of the robot took an
overall time of approximately 13 hours.

Table II presents a comparative analysis of the proposed
three haptic glance primitives. The table shows the mean
contact localization error, the success rate (over 30 episodes)
and average number of haptic glances for each primitive and
object, while using (2). The finger perturbations approach
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TABLE III
INSERTION PERFORMANCE OF DIFFERENT POLICES
Method cyl, Hex.  Ellip. Square . G,
prism prism  prism
Random Success 16% 20% 13% 10% 3%
actions #Glances 7.1 5.3 7.9 5.7 6.4
DEC Success 83%  73% 47% 53% 50%
#Glances 4.7 5.0 4.5 6.3 52
SL Success  93%  63% 73% 70% 47%
#Glances 4.5 7.4 38 6.9 7.1
RL Success 80% 73% 73% 53% 50%
w/o CL #Glances 3.9 49 4.8 6.5 5.8
ResRL Success  90% 93% 83% 67% 63%
w/o CL #Glances 4.3 4.5 3.7 4.6 4.8
Success | 97% 93% 90% 93% 90%
ResRIACL  4Glances © 34 30 29 33 3.5
TABLE IV
INSERTION PERFORMANCE OVER NOVEL TEST OBJECTS
Gum Wire Hollow Star Flower Inser.
Method box roll box prism prism time
~Clear. € (mm) 1.0 0.25 1.5 2.5 0.5 (sec)
Success 93% T7% 83% 87% 80%
ResRL+CL #Glances 20 33 33 52 6.0 406
Success 7%  10% 1% 50% 67%
SL #Glances 30 45 42 6.1 s9 416
TABLE V
TEST PERFORMANCE WITH INDUCED SE(S) UNCERTAINTY
Method cyr, Hex.  Ellip. Square . G,
prism prism  prism
Success  93% 90% 90% 77% 83%
ReRLACL  Glances 3.0 40 32 4.1 40
SL Success  87% 80% 73% 53% 70%
#Glances 5.1 5.9 44 6.6 6.0

shows better prediction accuracy both in position and ori-
entation compared to vertical press and arm tilts. Similarly,
it exhibits the highest success rate. Observations during the
testing have shown that haptic glances that are based on arm
movement can result in object jamming. In addition, when
slight tilting of the object occurs, it can easily become off-
centered with respect to the hole. Therefore, finger motions
have benefits for this task as they conform to these tilts.
In addition, finger perturbations slightly move the object on
the plane with some probability for alignment. Therefore,
the approach aid the insertion and increase success rate. It
is, therefore, chosen and used in further experiments. The
average time for a single finger perturbation haptic glance is
approximately 4 seconds.

The insertion classifier was trained with 1,600 recorded
haptic glances over the train objects with half in and half out
of the hole. An additional 300 test samples were collected with
the test objects. The resulted classification accuracy is 97% and
96% over the train and test objects, respectively. The classifier
is further used in the evaluation of RL insertions.

Fig. 6. Snapshots of insertion test trials for the (from left to right) wire roll,
star prism, flower prism and gum box.
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Fig. 7. Heatmap plots indicating the insertion success rate (%) for SL and
ResRL+CL with regards to the positional (norm of planar position) and
angular (norm of «,~y, 6) object errors encountered during test episodes.

C. RL results

Results above show that SL control is not able to reason
about object tilts. Evidently, rectangular objects have the
lowest success rate due to tilt sensitivity. Hence, RL-based
insertion can acquire unsupervised reasoning for these tilts and
act to correct them. RL is, therefore, tested while comparing
to baseline methods common in state-of-the-art for rigid hands
as discussed in Section II. We compare the ResRL with
and without CL to random actions, naive RL, SL and DFC.
Direct training of RL policies on real robots may require
substantial samples and, therefore, excessive runtime. Hence
and following [30], training of the RL policies is accelerated
by bootstrapping the actor network with an SL policy trained
with 350 samples collected under a random policy. To avoid
updates by the untrained critic network, we freeze the actor
network for the first 30 episodes of RL training.

Table III presents comparative results between the methods
over test episodes on the training objects. First, insertion with
random actions lay a baseline for the complexity of the task.
ResRL with CL policy acquired the presented results after 320
training episodes (corresponding to approximately 7 hours of
robot learning). To ensure a fair comparison, training of each
policy is stopped when reached the same amount of episodes.
Similarly, SL was trained with the same amount of episodes
and, therefore, the difference in results between Tables II and
III. Consequently, results reflect the SL requirement for much
more training episodes in order to reach performance similar
to RL. In addition, DFC alone does not perform well while
evidently providing performance boost to ResRL compared
to naive RL. The addition of CL to ResRL exhibit the best
success rate and lowest number of required haptic glances over
all objects. The trained SL and ResRL with CL were further
evaluated for insertion of the test objects in Table IV. Since
these are everyday objects, hole clearances are varied and
reported in the table. Here also, ResRL outperforms SL and
exhibits sufficient performance. Although dependent on the
manually-set velocity of the arm during pose correction, mean
insertion time is reported with clear advantage to ResRL+CL.
Note that wire roll and flower prism have a tight clearance and,
thus, a lower success rate. Snapshots of some test insertions
are shown in Figure 6.

While the above results include SE(3) uncertainties orig-
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inating from external contact forces and asymmetric grasps,
results yet emphasize ability to overcome them. To further
emphasize the ability, we intentionally induce uncertain tilt
angles in a test evaluation over the train objects without
further policy training. Pitch and roll angles of the arm are
uniformly sampled from the range «,y ~ U(—10°,10°)
during initial object grasp. Table V depicts the evaluation
results. In addition, Figure 7 shows heatmap plots of the
insertion success rate for SL and ResRL with CL with regards
to the positional and angular errors encountered during the test
episodes. The results show the ability of ResRL to overcome
uncertain tilting angles and large positional errors.

V. CONCLUSIONS

In this paper, we have proposed an online-learning frame-
work using residual RL to address the problem of precision
insertion with an underactuated compliant hand. With the RL
framework, the ability of the hand to correct SE(3) deviations
solely using F/T inputs was observed. The learning involves
curriculum learning and direct force control to guide and
expedite the learning. By exploring the haptic information of a
compliant hand during insertion attempts, the proposed method
can generalize to various object-hole pairs with high success
rate while also overcoming SE(3) uncertainties. While this
work discusses haptic-based insertion, the approach can be
used in various other applications. For instance, general pur-
pose manipulation in unstructured or occluded environments
require robots to accurately understand its scene. Hence, the
approach can be fused with vision for increased accuracy.
Similarly, in-hand object localization through contact with the
environment can be applied. Future extension to the work may
reason about the depth of the hole for smooth insertion without
drop. Also, additional work may explore transfer learning for
hardware generalization.
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