
Manifold Learning for Efficient Gravitational Search Algorithm

Chen Giladia,b, Avishai Sintovc

aDepartment of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
bDepartment of Mechanical Engineering, Sami-Shamoon College of Engineering, Ashdod, Israel

cSchool of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel

Abstract

Metaheuristic algorithms provide a practical tool for optimization in a high-dimensional search
space. Some mimic phenomenons of nature such as swarms and flocks. Prominent one is the
Gravitational Search Algorithm (GSA) inspired by Newton’s law of gravity to manipulate agents
modeled as point masses in the search space. The law of gravity states that interaction forces are
inversely proportional to the squared distance in the Euclidean space between two objects. In this
paper we claim that when the set of solutions lies in a lower-dimensional manifold, the Euclidean
distance would yield unfitted forces and bias in the results, thus causing suboptimal and slower
convergence. We propose to modify the algorithm and utilize geodesic distances gained through
manifold learning via diffusion maps. In addition, we incorporate elitism by storing exploration
data. We show the high performance of this approach in terms of the final solution value and the
rate of convergence compared to other meta-heuristic algorithms including the original GSA. In
this paper we also provide a comparative analysis of the state-of-the-art optimization algorithms
on a large set of standard benchmark functions.

Keywords: Optimization, Metaheuristic algorithm, Gravitational Search Algorithm

1. Introduction

In many fields, there is an increasing need for solutions to high-dimensional real-life optimiza-
tion problems. Optimization is required in many domains such as in finding the right design
parameters for multi-objective power distribution feeder while considering several criteria [27],
searching for high-energy particles [1], and dynamic locomotion [14]. One powerful branch of
optimization algorithms that has considerably grown in the past two decades is known as meta-
heuristic algorithms. These algorithms try to model physical or biological processes inspired by
various tasks such as hunting, defence, navigation, foraging and lowering energy levels, which
inherently solve high-dimensional optimization problems.

Previous research [6] has established that there are two main attributes to metaheuristic algo-
rithms. The first aspect is stochastic behavior. Deterministic solvers find the same nearby local
optimum for the same initial starting points. In contrast, metaheuristics incorporate randomness
and thus, capable of avoiding getting trapped in local optima in the search for a global solution.
However, in some particular cases they can still get trapped. Hence, their overall performance
and applicability are reduced. Therefore, the second fundamental property for effectively solving
high-dimensional optimization problems is the right balance between exploration and exploitation.
Exploration enables the search for a global solution while acquiring more information. Exploitation
uses current knowledge and performs local search for finding the optimum around good solutions
[8].

Preprint submitted to Information Sciences July 9, 2024

Early metaheuristic algorithms include the Genetic Algorithm (GA) inspired by Darwins theory
[15, 26], Simulated Annealing (SA) based on thermodynamic laws [19] and the Particle Swarm
Optimization (PSO) inspired by animal flocks such as birds and fish [5, 18]. More recent algorithms
are the Bacteria Foraging Optimization (BFO) mimicking the way bacteria search for nutrients
[28], the Ant Lion Optimizer (ALO) which mimics the hunting mechanism of Antlions in nature
[24]. Similarly, the Gravitational Search Algorithm (GSA) [30] and its different variations [10, 13]
are inspired by the laws of gravity and motion. Additional metaheuristic algorithms can be
reviewed in [11, 16, 17, 34, 25].

A more related metaheuristic algorithm could be reviewed in [23]. The algorithm, termed
the Gray Wolf Optimizer (GWO), employs the idea of feature selection for exploring the data to
eliminate irrelevant and redundant data while searching for the optimal solution. A classification
accuracy-based fitness function was proposed, to explore regions of the complex search space.
The author compares this algorithm with the PSO and GA over a set of benchmark machine
learning data repository. Dimensionality reduction is also used in [22] to boost the performance
of a Gaussian process model.

The standard GSA [30] uses the Euclidean space to calculate forces between agents based on
Newton’s law of gravity. However, in many problems, the set of solutions for the optimization
problem lies in a lower dimensional subspace embedded in the ambient search space. Using a
Euclidean metric may result in improper forces, may bias results, and trap or delay agents in
local optima. Therefore and inspired by GSA, in this work we present a modified algorithm
termed Curved Space Gravitational Search Algorithm (CSGSA). We propose working in the lower-
dimensional subspace learned by an unsupervised machine learning algorithm. Through manifold
learning we find the geodesic distances across the solution subspace which offer more fitted forces
between agents.

Some semi-supervised algorithms also make similar assumptions, as in the our manifold learning
approach, of a smooth manifold structure in the data. For example, Chapelle et al. [7] use this
concept to find middle ground between having all training set labeled and no labels at all. Similarly,
Belkin and Niyogi [3] assume that a high dimensional dataset used for a classification problem
actually resided on a lower-dimensional manifold. The work suggests utilizing this data structure
to overcome the tedious task of class labeling. However, there is no link between our work on
meta-heuristic search algorithms to classification. Nevertheless, the fair assumption that real life
high dimensional problems lie on a lower-dimnesional submanifold holds. The same idea can be
reviewed in [31].

Along with the manifold learning, we add elitism to the algorithm by incorporating a simple
memory-based approach. Consequently, this work provides an important opportunity to advance
the understanding of combining two domains: metaheuristic algorithms and unsupervised learn-
ing. To support our contributions, we performed an extensive comparative study comparing our
proposed algorithm to the state-of-the-art, GSA, ALO and PSO. The comparison is done through
a large set of standard benchmarking functions, allowing effective analysis. The comparative
analysis also provides an insight into the performance of prominent metaheuristic algorithms in
various functions and may assist in future choices of algorithms. We note that we do not perform
complexity comparison between the algorithms since complexity analysis for such meta-heuristic
optimization algorithms simply do not exist due to their stochastic nature.

The paper is organized as follows. Section 2 introduces the original GSA algorithm and address
cases in which the algorithm can bias the results. In Section 3, the CSGSA and its characteristics
are described. Section 4 provides a brief overview of two state-of-the-art approaches to be used in
the comparative study of Section 5.

2

2. Gravitational Search Algorithm (GSA)

A continuous parameter maximization problem for a given objective function of the form
f : X → R with X ⊆ Rn, is defined as finding some global optimum x∗ ∈ X such that for
any x ∈ X , f(x∗) ≥ f(x) is satisfied. We note that without loss of generality, in the theoretic
discussion we refer to a maximization problem. Nevertheless, a minimization problem can easily
be addressed. Next, we present the original GSA algorithm as proposed in [30] followed by a
discussion of cases in which the algorithm fails to perform well.

2.1. Algorithm

In this section we briefly present the GSA algorithm. Readers may review the complete al-
gorithm in [30]. In GSA, candidate solutions are modelled as point mass objects, termed agents,
in the high-dimensional search space. All agents attract each other based on the law of gravity,
i.e., the force acting between two agents is inversely proportional to the product of their masses
divided by the square of the distance between them.

The GSA algorithm is initialized with N random agents where the position xi ∈ X of each is
given by

xi =
(
x1
i , . . . , x

n
i

)
for i = 1, 2, . . . , N, (1)

where xdi is the dth vector component of the i-th agent. Each agent is allowed to move in an
n-dimensional hyper-rectangle in X defined by the lower and upper bounds of the problem. At
iteration t, the force exerted on agent j by agent i is

Fij(t) = G(t)
Mi(t)Mj(t)

Rij(t)
(xj(t)− xi(t)) (2)

where Mi(t) and G(t) are the mass of the ith agent and the gravitational constant at time t,
respectively. Rij is the Euclidean distance between the two agents

Rij(t) = ‖xi(t)− xj(t)‖2. (3)

By lapse of iterations, the mass of an agent changes dynamically, and is calculated according to

Mi(t) =
mi(t)∑N
j=1mj(t)

(4)

where

mi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

, (5)

and fiti(t) is the fitness value or cost of agent i at time t, i.e., fiti(t) = f(xi(t)). Thus, we collect
the best and worst fitness values according to

best(t) = max
i∈i,...N

fiti(t) and worst(t) = min
i∈i,...N

fiti(t), (6)

to determine the mass of each agent. In this way, masses with better fitness values will be heavier.
Consequently, heavier agents hold better solutions and thus, are harder to be influenced while
contributing better exploitation.

The algorithm must avoid trapping the agents in local optima. Thus, at first it is important to
allow the agents to move more freely across the search space, i.e., enable more exploration. After

3

each iteration, the exploration should decrease while increasing exploitation. The way to enforce
and control this behavior is by changing the gravitational constant over time G(t). The update
rule for this constant can be any decaying function. We choose an exponential decay in our work,
which obeys the following

G(t) = G(to)exp

(
−α t

tmax

)
(7)

where G(to) is the initial gravitational constant and α controls the decaying rate. Parameter tmax
is user-defined and denotes the maximum number of iteration steps in the search.

The total force acting on mass i in the dth dimension at time t is given by

F d
i (t) =

N∑
j∈KBest,j 6=i

randjF
d
ij(t), (8)

where randj is a random number in the interval [0, 1] and KBest is the group of K agents with
the best fitness values. As the exploration decays in favor of exploitation, the number of agents
in Kbest decreases such that only they attract others. The acceleration of particle i in the dth

dimension is calculated by applying Newton’s second law

adi (t) =
F d
i (t)

Mi(t)
. (9)

In order to insert a stochastic characteristic to the algorithm, the velocity update of an agent is
the addition of the current agent’s velocity to the imposed acceleration multiplied by a random
variable in the interval [0, 1] as follows

vdi (t+ 1) = randi
(
vdi (t) + adi (t)

)
. (10)

We note that a constant of one is multiplied before the acceleration term to match the units.
Finally, the new update location of particle i in the dth dimension is

xdi (t+ 1) = xdi (t) + vdi (t+ 1). (11)

The exploration involves not only the randomization of the initial population but also the
acting forces as can be seen in (8). Consequently, the agents would explore the search space
according to the overall attraction forces of this multi-body problem. An interesting part is the
movement dynamics of the heavier agent. The heavier an agent, the less it would move. This
would inherently correspond to good exploitation ability leading to a better solution in the search
space.

2.2. Problem

In many real-life problems, the dimension of X is high and some dimensions have greater effect
on the optimality search. Further, it is not a priori known which dimensions offer the fastest and
better global solution. Moreover, the problem becomes more severe as the number of optimization
parameters increases. This is a general problem recognized as one of the main challenges faced by
high-dimensional optimization algorithms and is known as the curse of dimensionality [4].

The curse of dimensionality has additional implications in GSA when some dimensions are
correlated. The transfer of information between agents is based on the law of gravity. Within
this framework, there are two possibilities of transferring information. The first is the product of

4

masses in the numerator of (2). A better fitness value results in a heavier mass with stronger ability
to pull other agents. This will result in higher acceleration toward the fitter solution. The distance
in the denominator of (2) is the second mean by which information is transferred between agents.
The closer two agents are, the stronger the attraction forces between them. In this paper, we argue
that these forces are fit only if the dimensions are uncorrelated. If there are correlations such that
the solutions lie in a lower-dimensional manifold in the search space, then the sampling used in
this stochastic optimization algorithm might end up with very biased results. Moreover, it may
occur that the data lies on some manifold such that GSA wrongly invokes excessive forces between
two agents. The two agents may appear close to each other whereas on the actual manifold, they
are far away.

Figure 1 illustrates two planar examples where the resulting forces interfere with the maxi-
mization. In both examples, agents M1 and M2 are close in terms of the Euclidean distance in
X and thus, attract each other with a relatively large force. In Figure 1a, M2 prevents M1 from
climbing to the maximum point. In Figure 1b, the information transfer from the fittest agent
M3 is overtaken by the attraction force F12 which is quite large due to the short Euclidean dis-
tance between M1 and M2. Similarly, in the higher-dimensional Swiss-roll example of Figure 2,
the distances between the agents are calculated according to the Euclidean distance and result
in unfitted attraction forces. However, calculating the distances across the Swiss-roll manifold
may provide more suited forces. In the following section we discuss this approach and the Curved
Space Gravitational Search Algorithm (CSGSA).

(a) (b)

Figure 1: Two examples of maximization problems where agents M1 and M2 prevent one another from climbing
up and advance toward the maximum.

3. Curved Space Gravitational Search Algorithm

In this Section we introduce our modifications for the GSA to address the issues discussed in
the previous section.

3.1. Approach

We have argued that considering Euclidean distances in the calculation of the attraction forces
would result in unfitted forces and bias in the results. One method that has evolved to help solve
such problems is based on nonlinear dimensionality reduction of data in high-dimensional spaces.

5

Figure 2: An example of the solution subspace in the form of a Swiss-roll where agent M1 has too much influence
on M3 due to attraction forces computed according to the Euclidean distance in X . Agents may be influenced by
forces that do not take the real distances across the manifold, thus causing biased resultant forces.

The basic idea in nonlinear dimensionality reduction is to find a low-dimensional manifold embed-
ded in a high-dimensional space. One interesting approach uses a combination of a metaheuristic
algorithm and an unsupervised learning technique, specifically, manifold learning [2, 3, 33]. The
idea is to map samples from a higher dimensional space to a lower subspace and to perform the
search in the latter.

As was pointed out previously, the agents are assumed to live on a manifold embedded in high-
dimensional search space. When calculating the distance between two agents, one does not need
to obey the standard Newton’s law of gravity. Specifically, the Euclidean distance is not always
suitable for the calculation of the attraction forces. Therefore, we focus on calculating the actual
distance along the manifold where agents solely move on, i.e., geodesic distance. We propose
to add an important step to the GSA. By utilizing diffusion maps [9], a known dimensionality
reduction technique, we can uncover the subspace in which the population lives. We argue that
this would serve as a better way to calculate the distance between two agents and therefore,
provide a better estimation of the actual gravitational force exerted on each agent. Consequently,
an improved update rule would be acquired more suited to the given problem. In essence, the
key advancement proposed in this work is to dynamically modify the update rule of each agent
and to transfer information between them based on their true distances across the manifold. The
complete CSGSA is presented in Algorithm 1.

In addition to manifold learning, we propose to improve exploration by randomly generating N

6

new agents in each iteration. However, new sampling may result in the lost of the original samples
distribution, hence, increasing the chances of repeated calculations. Thus, in opposed to GSA,
we propose to incorporate an element of elitism. We create a candidate container H that stores
the last status of all sampled agents. In each iteration, N new agents are sampled, evaluated and
added to H. Then, the fittest N agents are extracted from the database and used for exploration
and exploitation. This step takes previous exploration history to consideration and ensures the
update of the most relevant candidate solutions. Only the most fitted agents are allowed to evolve.

Algorithm 1: Curved space gravitational search algorithm

1 while criterion is not satisfied do
2 Randomly initialize N new agents.;
3 Calculate fitness fiti for each agent i = 1, . . . , N .;
4 Update new agents to database H.;
5 Choose N best agents from H.;
6 Calculate besti, worsti and Mi for each agent i = 1, . . . , N .;
7 Update gravitational constant G.;
8 Learn manifold and calculate relative distances.;
9 Calculate acceleration in gravitational field for each agent.;

10 Update velocities and positions.;

11 return best solution;

3.2. Dimensionality Reduction by Diffusion Maps

The learning of the manifold could be done via various proposed algorithms for dimensionality
reduction. In this paper, we choose to use Diffusion Maps as a tool to learn the distance along this
manifold as presented by Coifman and Lafon [9]. Diffusion maps are a graph-based dimensionality
reduction method with applications such as image processing [12] and data clustering [20]. A
diffusion map is an embedding in the Euclidean space Rn and thus, the diffusion distance inherits
all the metric properties of Rn. Therefore, the diffusion map is an efficient method for acquiring
a metric subspace corresponding to the non-linear manifold in the Euclidean space. The general
idea is to find the underlying manifold that the data has been sampled from. Coifman and Lafon
found that through the computation of the eigenvectors and eigenvalues of a diffusion operator on
the data, one could estimate the diffusion distance between probability distributions centered at
two points in the high-dimensional space.

Suppose we have N agents. For approximating the probability of transition from one agent’s
position to the next, we define the kernel function

k(xi,xj) = exp

(
−‖xi − xj‖2

γ

)
(12)

to be Gaussian with a decaying rate of γ. This kernel establishes prior local geometry information
of the agents. In order to have a probability function of taking a step from the i-th agent to the
j-th agent, we calculate the reversible Markov chain on the dataset as follows

connectivity(xi,xj) = p(xi,xj) =
k(xi,xj)∑
i k(xi,xj)

. (13)

7

We now define the normalized diffusion matrix P such that Pi,j = p(xi,xj). Each component Pi,j
encapsulates the local knowledge of the connectivity between xi and xj.

Dimensionality reduction is done by neglecting certain dimensions in the diffusion space of the
normalized diffusion matrix P . In practice, we find the eigenvectors of P by solving

Pz = λz (14)

where z ∈ RN and λ ∈ R. Thus, zi, i = 1, ..., N are the eigenvectors of P corresponding to
the eigenvalues 1 ≥ λ1 ≥ . . . ≥ λN . We choose only the m < n dimensions associated with the
dominant eigenvectors of P and map xi ∈ X to yi ∈ Rm according to

yi = (zi1, . . . , z
i
m)T , i = 1, . . . , N, (15)

where zij is the i-th element of zj. The basic diffusion-mapping algorithm is described in Algorithm
2 [29].

Algorithm 2: Diffusion map algorithm

1 Input: High dimensional data set xi, i = 1, . . . , N .;
2 Define kernel k(x, y).;
3 Create a diffusion matrix P .;
4 Calculate the eigenvectors of the diffusion matrix P .;
5 Map to the m-dimensional diffusion space using the m dominant eigen-vectors according

to (15).;
6 Return Lower dimensional data set yi, i = 1, . . . , N .;

In general, the higher the dimensionality, the more difficult it becomes to sample the space. In
order to correctly map the high-dimensional data set to a lower-dimensional subspace, a nonlinear
dimensionality reduction technique requires as much data as possible. Many researchers have
utilized metaheuristic algorithms in a sequential manner. At each iteration of the algorithm,
perform three main steps: self-adaptation, cooperation and competition between different agents
[21]. The last step is highly important. As in nature, low genetic diversity increases the chances
of future generations of offspring to have the same attributes as their parents. Thus, this results
in reduced robustness to environmental changes [21]. In other words, nature’s capability to adapt
to changes in the environment improves with the population growth. Metaheuristic algorithms,
which are also population-based, improve according to the number of agents. Although the size
of the population needed to efficiently solve a specific problem may vary from one problem to
another, a general rule of thumb is, the larger the population the better.

4. Metaheuristic state-of-the-art algorithms

In the comparative study of Section 5, we compare the CSGSA to the Particle Swarm Opti-
mization (PSO), to the Ant Lion Optimization (ALO) and to the original GSA. PSO and ALO
are briefly reviewed in this section prior to the comparative analysis.

4.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [18] is inspired by bird flocking and fish schooling in
nature. A flock of birds or a particle swarm operate according to the fitness information obtained

8

from the environment. In this way, particles update their position according to their individual
best-known fitness and the overall groups best solution. In PSO, the position and velocity of each
individual are calculated and updated as follows:

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (16)

vdi (t+ 1) = w(t)vdi (t) + c1ri1(pbestdi − xdi (t)) + c2ri2(gbestd − xdi (t)) (17)

where ri1 and ri2 are two random variable in the interval [0, 1], c1 and c2 are two positive constants,
and w is the inertia parameter. The position and velocity of the i-th particle are represented by
xi = (x1

i , . . . , x
n
i) and vi = (v1

i , . . . , v
n
i), respectively. Also, the best solution of the i-th particle is

stored as pbesti = (pbest1i , . . . , pbest
n
i) and the best result among all of the population is stored

as gbest = (gbest1, . . . , gbestn). PSO resembles GSA with the use of agents in the solution space.
However, PSO incorporates elitism and relies on previous fitness information whereas GSA only
uses the current status of the agents.

4.2. Ant Lion Optimization (ALO)

The Ant Lion (Antlion) [24] optimizer is inspired by the interactive dynamics of antlions and
ants in nature. As such, ants are allowed to move freely over the search space and in a stochastic
manner. The position of a single ant is equivalent to a solution of an optimization problem. Ants
move in the solution space with random walks and their position is calculated as follows

xdi = [0, cumsum(2r(t1)− 1), . . . , cumsum(2r(tk)− 1)] (18)

where cumsum calculates the cumulative sum, k is the maximum number of iterations, tj is the
j-th time step of the random walk. r(t) is a stochastic function defined as follows:

r(t) =

{
1, rand() ≤ 0.5
0, otherwise

(19)

where t is the time step and rand() is a random number uniformly generated in the interval of
[0, 1].

Antlions spread in the search space lay pits to trap ants where each pit size is proportional
to the fitness of the antlion. Thus, larger pits have a higher probability to trap ants. Ants are
required to move within a hyper-sphere around a selected antlion. When an antlion tries to catch
an ant, it throws sand to the outer edge of the pit to create a small avalanche of sand and to make it
harder for the ant to escape. This behavior is modeled by adaptively decreasing the ant’s random
walk hyper-sphere. Consequently, the ant is forced to slide inside the pit and thus, exploitation in
the vicinity of the antlion is enabled. If an ant becomes fitter than its nearest antlion, the antlion
reposition itself to the position of the ant by

Antliontj = Antti, if f(Anttj) > f(Antliontj) (20)

where Antliontj and Antti are the j-th antlion and i-th ant’s position, respectively, at time t, and
f(·) is the fitness function. This process mimics the antlion catching its prey. Through iterations,
the best antlion is saved (position and fitness) and updated until termination criterion is satisfied.
The best antlion at the end of the run is considered as the global solution.

9

5. Experimental results

In this section we evaluate the performance of the proposed algorithm and provide a compar-
ative analysis. The CSGSA is compared to ALO, PSO and the original GSA. In our analysis, we
pay attention to two important attributes of the performance: the final fitness value and the rate
of convergence. For that matter, the algorithms are benchmarked on a set of standard functions
presented in Section 5.1 followed by a comparative study in Section 5.2.

5.1. Benchmark functions

The comparative analysis was performed by benchmarking 47 standard test functions taken
from [32]. The functions are divided into six groups: many local minima (Table 1), bowl-shaped
(Table 2), plate-shaped (Table 3), valley-shaped (Table 4), steep ridges or drops (Table 5) and
various other functions (Table 6). Tables 1-6 present the functions, the global minimum value of
each function and the search subset in X . The standard names of the functions and additional
information are given in Tables A.1 and A.2 of Appendix A, respectively. Plots of the functions
are seen in Figures A.1-A.6. Some of the functions have a multitude of local optima. Thus, the
algorithms are tested in their ability to balance between exploration and exploitation to find the
global optimum.

5.2. Results

We compared the proposed CSGSA with the PSO, ALO and GSA algorithms using the
mentioned set of benchmark functions. For fair and easy comparison, we use the same hyper-
parameters used in the relavent literature, including the number of agents. Therefore, in all cases,
population size is chosen to be N = 50. In the multi-dimensional benchmark functions, the di-
mension is set to d = 30 and the maximum number of iterations is 1,000. The results are averaged
over 30 trials. In PSO, the constants used are c1 = 1.5, c2 = 2 and w = 1. All algorithms were
implemented and tested in Matlab.

The Wilcoxon test is a non-parametric statistical way of computing the sampling distribution
for any test statistic. It tests the null hypothesis as to whether two sets of solutions are sig-
nificantly different. The Wilcoxon test outputs a parameter termed p-value that determines the
significance of the results for whether the null hypothesis is true. In this work, the test compares
the performance of two algorithms applied to the same set of benchmark functions. Thus, the
difference between two algorithms is statistically significant if the p-value is less than 0.05. All
algorithms are compared to the CSGSA.

The average best-so-far, standard deviation, p-value and average number of iterations to con-
vergence for each algorithm and benchmark function are presented in Tables 7-12. The average
number of iterations leading to convergence is calculated as the number of iterations in which the
relative error is 2%, that is, the following condition is satisfied∣∣∣∣best(t)− best(tmax)best(tmax)

∣∣∣∣ < 0.02, best(t) = max
i∈1,...N

f(xi(t)). (21)

To summarize the results, Table 13 presents the performance of CSGSA compared to the other
algorithms with regards to the group of functions. It shows the percentage in which CSGSA
performs equally or better in terms of the converged fitness value and the required number of
iterations to convergence. Since each of the metaheuristic algorithms is stochastic, there are
usually different final values after N iterations. Here also and for determining if two sets of results

10

Table 1: Many Local Minima Functions

Function Global Minimum Search Space

F1(x) = −a exp(−b
√

1
d

∑d
i=1 x

2
i)− exp(1

d

∑d
i=1 cos(cxi)) + a+ exp(1) F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−32.768, 32.768],

for all i = 1, ..., d

F2(x) = 100
√∣∣x2 − 0.01x21

∣∣+ 0.01 |x1 + 10| F (x∗) = 0,

at x∗ = (−10, 1)

x1 ∈ [−15,−5],

x2 ∈ [−3, 3]

F3(x) = −0.0001

(∣∣∣∣∣sin(x1) sin(x2) exp

(∣∣∣∣∣100−
√
x21+x

2
2

π

∣∣∣∣∣
)∣∣∣∣∣+ 1

)0.1

F (x∗) = −2.06261,

at x∗ = (1.3491,−1.3491),

(1.3491, 1.3491),

(−1.3491, 1.3491) and

(−1.3491,−1.3491)

xi ∈ [−10, 10],

for all i = 1, 2

F4(x) = −
1+cos(12

√
x21+x

2
2)

0.5(x21+x
2
2)+2

F (x∗) = −1,

at x∗ = (0, 0)

xi ∈ [−5.12, 5.12],

for all i = 1, 2

F5(x) = −(x2 + 47) sin
(√∣∣x2 + x1

2
+ 47

∣∣)− x1 sin(
√
|x1 − (x2 + 47)|) F (x∗) = −959.6407,

at x∗ = (512, 404.2319)

xi ∈ [−512, 512],

for all i = 1, 2

F6(x) =
sin(10πx)

2x
+ (x− 1)4 x ∈ [0.5, 2.5]

F7(x) =
∑d
i=1

x2i
4000

−
∏d
i=1 cos

(
xi√
i

)
+ 1 F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−600, 600],

for all i = 1, ..., d

F8(x) = −

∣∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣∣1−
√
x21+x

2
2

π

∣∣∣∣∣
)∣∣∣∣∣ F (x∗) = −19.2085,

at x∗ = (8.05502, 9.66459),

(8.05502,−9.66459),

(−8.05502, 9.66459) and

(−8.05502,−9.66459)

xi ∈ [−10, 10],

for all i = 1, 2

F9(x) =
∑m
i=1 ci exp

(
− 1
π

∑d
j=1(xj −Aij)2

)
cos
(
π
∑d
j=1(xj −Aij)2

)
xi ∈ [0, 10],

for all i = 1, ..., d

F10(x) = sin2(πw1) +

d−1∑
i=1

(wi − 1)2[1 + 10 sin2(πwi + 1)] + (wd − 1)2

[1 + sin2(2πwd)]

F (x∗) = 0,

at x∗ = (1, ..., 1)

xi ∈ [−10, 10],

for all i = 1, ..., d

F11(x) = sin2(3πx1) + (x1 − 1)2[1 + sin2(3πx2)] + (x2 − 1)2[1 + sin2(2πx2)]F (x∗) = 0,

at x∗ = (1, 1)

xi ∈ [−10, 10],

for all i = 1, 2

F12(x) = 10d+
∑d
i=1[x2i − 10 cos(2πxi)] F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−5.12, 5.12],

for all i = 1, ..., d

F13(x) = 0.5 +
sin2(x21−x

2
2)−0.5

[1+0.001(x21−x
2
2)]

2 F (x∗) = 0,

at x∗ = (0, 0)

xi ∈ [−100, 100],

for all i = 1, 2

F14(x) = 0.5 +
cos(sin(|x21−x22|))−0.5

[1+0.001(x21−x
2
2)]

2 xi ∈ [−100, 100],

for all i = 1, 2

F15(x) = 418.9829d−
∑d
i=1 xi sin(

√
|xi|) F (x∗) = 0, at

x∗ = (420.9687, ..., 420.9687)

xi ∈ [−500, 500],

for all i = 1, ..., d

F16(x) =
(∑5

i=1 i cos((i+ 1)x1 + i)
)(∑5

i=1 i cos((i+ 1)x2 + i)
)

F (x∗) = −186.7309 xi ∈ [−10, 10],

for all i = 1, 2

11

Table 2: Bowl-Shaped Functions

Function Global Minimum Search Space

F171 (x) = x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7,

F172 (x) = x21 + 2x22 − 0.3 cos(3πx1) cos(4πx2) + 0.3,

F173 (x) = x21 + 2x22 − 0.3 cos(3πx1 + 4πx2) + 0.3

Fj(x
∗) = 0, at x∗ = (0, 0),

for all j = 1, 2, 3

xi ∈ [−100, 100],

for all i = 1, 2

F18(x) =
∑d
i=1

(∑d
j=1(j + β)

(
xij −

1
ji

))2
F (x∗) = 0,

at x∗ = (1,
1

2
, ...

1

d
)

xi ∈ [−d, d],

for all i = 1, ..., d

F19(x) =
∑d
i=1

∑i
j=1 x

2
j F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−65.536, 65.536],

for all i = 1, ..., d

F20(x) =
∑d
i=1 x

2
i F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−5.12, 5.12],

for all i = 1, ..., d

F21(x) =
∑d
i=1 |xi|

i+1 F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−1, 1],

for all i = 1, ..., d

F22(x) =
∑d
i=1 ix

2
i F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−10, 10],

for all i = 1, ..., d

F23(x) =
∑d
i=1(xi − 1)2 −

∑d
i=2 xixi−1 F (x∗) = −d(d+ 4)(d− 1)/6,

at xi = i(d+ 1− i),
for all i = 1, 2, ..., d

xi ∈ [−d2, d2],

for all i = 1, ..., d

Table 3: Plate-Shaped Functions

Function Global Minimum Search Space

F24(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 F (x∗) = 0,

at x∗ = (1, 3)

xi ∈ [−10, 10],

for all i = 1, 2
F25(x) = 0.26(x21 + x22)− 0.48x1x2 F (x∗) = 0,

at x∗ = (0, 0)

xi ∈ [−10, 10],

for all i = 1, 2
F26(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1 F (x∗) = −1.9133,

at x∗ = (−0.54719,−1.54719)

x1 ∈ [−1.5, 4],

x2 ∈ [−3, 4]

F27(x) =
∑d
i=1

[(∑d
j=1 x

i
j

)
− bi

]2
xi ∈ [0, d],

for all i = 1, ..., d

F28(x) =
∑d
i=1 x

2
i +

(∑d
i=1 0.5ixi

)2
+
(∑d

i=1 0.5ixi

)4
F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−5, 10],

for all i = 1, ..., d

Table 4: Valley-Shaped Functions

Function Global Minimum Search Space

F29(x) = 2x21 − 1.05x41 +
x61
6

+ x1x2 + x22 F (x∗) = 0,

at x∗ = (0, 0)

xi ∈ [−5, 5],

for all i = 1, 2

F30(x) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 + (−4 + 4x22)x22 F (x∗) = −1.0316, at

x∗ = (0.0898,−0.7126) and

(−0.0898, 0.7126)

x1 ∈ [−3, 3], x2 ∈ [−2, 2]

F31(x) = (x1 − 1)2 +
∑d
i=2 i(2x

2
i − xi−1)2 F (x∗) = 0, at xi = 2

− 2i−2

2i ,

for i = 1, . . . , d

xi ∈ [−10, 10],

for all i = 1, ..., d

F32(x) =
∑d−1
i=1 [100(xi+1 − x2i)2 + (xi − 1)2] F (x∗) = 0,

at x∗ = (1, ..., 1)

xi ∈ [−5, 10],

for all i = 1, ..., d

12

Table 5: Steep Ridges/Drops Functions

Function Global Minimum Search Space

F33(x) =
(

0.002 +
∑25
i=1

1
i+(x1−a1i)6+(x2−a2i)6

)−1
xi ∈ [−65.536, 65.536],

for all i = 1, 2
F34(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2) F (x∗) = 0,

at x∗ = (π, π)

xi ∈ [−100, 100],

for all i = 1, 2

F35(x) = −
∑d
i=1 sin(xi) sin2m

(
ix2i
π

)
at d = 2 : F (x∗) = −1.8013,

at x∗ = (2.20, 1.57),

at d = 5 : F (x∗) = −4.687658,

at d = 10 : F (x∗) = −9.66015

xi ∈ [0, π],

for all i = 1, ..., d

Table 6: Other Functions

Function Global Minimum Search Space

F36(x) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x22)2 + (2.625− x1 + x1x32)2F (x∗) = 0,

at x∗ = (3, 0.5)

xi ∈ [−4.5, 4.5],

for all i = 1, 2
F37(x) = a(x2 − bx21 + cx1 − r)2 + s(1− t) cos(x1) + s F (x∗) = 0.397887,

at x∗ = (−π, 12.275),

(π, 12.275) and

(9.42478, 2.475)

x1 ∈ [−5, 10],

x2 ∈ [0, 15]

F38(x) = 100(x21 − x2)2 + (x1 − 1)2 + (x3 − 1)2 + 90(x23 − x4)2+

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

F (x∗) = 0,

at x∗ = (1, 1, 1, 1)

xi ∈ [−10, 10],

for all i = 1, 2, 3, 4

F39(x) = (6x− 2)2 sin(12x− 4) x ∈ [0, 1]

F40(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]×
[30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

F (x∗) = 3,

at x∗ = (0,−1)

xi ∈ [−2, 2],

for all i = 1, 2

F41(x) = −
∑4
i=1 αi exp

(
−
∑3
j=1 Aij(xj − Pij)2

)
F (x∗) = −3.86278, at

x∗ = (0.114614, 0.555649, 0.852547)

xi ∈ (0, 1),

for all i = 1, 2, 3

F42(x) = 1
0.839

[
1.1−

∑4
i=1 αi exp

(
−
∑4
j=1 Aij(xj − Pij)2

)]
xi ∈ [0, 1],

for all i = 1, 2, 3, 4

F43(x) = −
∑4
i=1 αi exp

(
−
∑6
j=1 Aij(xj − Pij)2

)
F (x∗) = −3.32237, at

x∗ = (0.20169, 0.150011, 0.476874,

0.275332, 0.311652, 0.6573)

xi ∈ (0, 1),

for all i = 1, . . . , 6

F44(x) =
∑d
i=1

(∑d
j=1(ji + β)

((
xj
j

)i
− 1

))2

F (x∗) = 0,

at x∗ = (1, 2, ..., d)

xi ∈ [−d, d],

for all i = 1, ..., d

F45(x) =

d/4∑
i=1

[(x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)2+

(x4i−2 − 2x4i−1)4 + 10(x4i−3 − x4i)4]

F (x∗) = 0,

at x∗ = (0, ..., 0)

xi ∈ [−4, 5],

for all i = 1, ..., d

F46(x) = −
∑m
i=1

(∑4
j=1(xj − Cji)2 + βi

)−1
at m = 5 : F (x∗) = −10.1532,

at x∗ = (4, 4, 4, 4),

at m = 7 : F (x∗) = −10.4029,

at x∗ = (4, 4, 4, 4),

at m = 10 : F (x∗) = −10.5364,

at x∗ = (4, 4, 4, 4)

xi ∈ [0, 10],

for all i = 1, 2, 3, 4

F47(x) = 1
2

∑d
i=1(x4i − 16x2i + 5xi) F (x∗) = −39.16599d,

at x∗ = (−2.903534, . . . ,−2.903534)

xi ∈ [−5, 5],

for all i = 1, ..., d

13

are statistically significant, we used the Wilcoxon rank-sum test. The test was used both for the
converged fitness value and for the rate for convergence.

When observing the converged fitness value and when comparing to ALO and GSA, in most
cases CSGSA reaches the same optimum or better. Compared to PSO, CSGSA outperforms in
some cases but not so distinctively. Nonetheless, it performs quite well compared to PSO and
significantly outperforms ALO and GSA in the first group of functions with many local minima
(1-16). This is an evident that considering geodesic distances provides a strong advantage. This
strategy is more pronounced compared to using the Euclidean distance in cases of many local
minima and step ridges. Figure 1a illustrates a clear example of biased results when sharing
information between agents while considering the Euclidean distance. This type of property occurs
in the mentioned functions and may lead to inferior behavior of the population. Thus, it is difficult
for the agents to move across the manifold and out of local minima. Since CSGSA calculates the
geodesic distance along the manifold, this biased information effect is less pronounced.

In some functions, such as F12 and F15, CSGSA failed to converge to the global minimum. This
may be due to the stochastic nature of the algorithm and happens also in the other algorithms.
For example, ALO failed to converge for F13 and PSO failed in F27. This phenomenon may be
solved in future optimization of the hyper-parameters as we discuss later in the conclusions. In
addition, it is important to note that in many cases, the difference between the converged values is
very small (e.g., 5.64× 10−6 between PSO and CSGSA in F22), and insignificant in most practical
applications. Thus, we can conclude that CSGSA, when observing the final fitness value, is at
least comparable to the other algorithms and outperforms them in many cases.

In addition to the final fitness value attribute, the use of manifold learning can provide faster
convergence. From the results, it is clear that CSGSA converges faster than the other algorithms
in the majority of the functions. Figure 3 presents the convergence of the four algorithms on six
selected functions. The functions were selected as they best reflect the convergence behaviour
of CSGSA compared to the other three methods. The high convergence rate is due to the more
fitted attraction forces provided through the manifold learning. This property is significant in
high-frequency computations where efficiency is important. It is also interesting to understand
the relative convergence rate of the different algorithms with various families of functions. In
general, the common way of comparing stochastic algorithms is mainly based on experiments
where the parameter of choice is the final fitness value or the rate of convergance. Table 13
provides a summary of the convergence rate of the different algorithms for various families of
functions. Since we have built upon the implementation of GSA, the benefit of the manifold
learning property is clear as it provides better convergence speed in the majority of the cases.

6. Conclusions

In this work we modified the original GSA by improving the information transfer through
manifold learning and incorporated elitism. The manifold learning using Diffusion maps enabled
the acquisition of more fitted forces between agents. The performance of the proposed algorithm
was benchmarked and compared to other state-of-the-art algorithms over 47 test functions. The
results show that the proposed algorithm can find better optima in many of the benchmark
functions. Moreover, the manifold learning approach has been proven to be highly beneficial
in terms of convergence rate.

The main weakness of metaheuristic algorithms is the vague understanding of what is the
appropriate size of the population needed in order to find a good solution. Future work may include
a systematic analysis to state-of-the-art algorithms, including the CSGSA, to reason about the

14

Table 7: Comparative results for the benchmark functions in Table 1 with population N = 50 and maximum
number of iterations 1,000.

F ALO PSO GSA CSGSA

1 Average best-so-far 0.17 5.151×10−15 3.144 7.65×10−11

Standard deviation 0.448 1.445×10−15 1.931 2.6×10−10

p-value 1.734×10−6 0.003 1.734×10−6

Avg. num. iter. to convergence 925 ± 166 328 ± 172 86 ± 79 143 ± 17
2 Average best-so-far 0.032 0.013 0.016 0.007

Standard deviation 0.018 0.011 0.009 0.004
p-value 6.983×10−6 0.062 8.918×10−5

Avg. num. iter. to convergence 969 ± 26 140 ± 20 918 ± 53 261 ± 43
3 Average best-so-far -2.062 -2.062 -2.062 -2.062

Standard deviation 3.906×10−15 9.033×10−16 9.033×10−16 2.272×10−9

p-value 8.77×10−5 1.819×10−5 1.819×10−5

Avg. num. iter. to convergence 3 ± 1 1 ± 0 3 ± 2 2 ± 1
4 Average best-so-far -0.955 -1 -0.994 -0.999

Standard deviation 0.029 0 0.004 4.682×10−9

p-value 2.161×10−5 5.588×10−6 1.734×10−6

Avg. num. iter. to convergence 39 ± 46 21 ± 10 124 ± 43 17 ± 7
5 Average best-so-far -911.625 -860.355 -723.484 -945.531

Standard deviation 84.912 117.063 127.909 31.495
p-value 0.926 0.001 1.734×10−6

Avg. num. iter. to convergence 19 ± 22 11 ± 10 1 ± 1 106 ± 152
6 Average best-so-far -0.869 -0.869 -0.869 -

Standard deviation 1.095×10−15 5.646×10−16 2.022×10−5 -
p-value - - -
Avg. num. iter. to convergence 5 ± 3 2 ± 1 4 ± 3 -

7 Average best-so-far 0.216 0.088 0.032 -
Standard deviation 0.097 0.034 0.056 -
p-value - - -
Avg. num. iter. to convergence 719 ± 47 154 ± 77 156 ± 98 -

8 Average best-so-far -19.208 -19.208 -19.193 -19.208
Standard deviation 5.643×10−13 5.826×10−15 0.023 3.135×10−5

p-value 2.353×10−6 2.563×10−6 0.02
Avg. num. iter. to convergence 33 ± 34 6 ± 4 18 ± 14 30 ± 20

9 Average best-so-far - - - -
Standard deviation - - - -
p-value - - -
Avg. num. iter. to convergence - - - -

10 Average best-so-far 0.527 1.499×10−32 5.789×10−19 3.914×10−5

Standard deviation 0.599 1.113×10−47 2.19×10−19 1.084×10−4

p-value 2.613×10−4 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 512 ± 357 246 ± 25 997 ± 4 372 ± 242
11 Average best-so-far 7.529×10−14 1.349×10−31 2.741×10−20 1.779×10−30

Standard deviation 9.082×10−14 6.68×10−47 2.706×10−20 3.715×10−30

p-value 0 0 0
Avg. num. iter. to convergence 976 ± 15 151 ± 3 989 ± 16 48 ± 48

12 Average best-so-far 17.212 10.38 3.051 4.416
Standard deviation 7.813 4.454 1.63 3.287
p-value 2.126×10−6 2.596×10−5 0.068
Avg. num. iter. to convergence 344 ± 79 86 ± 25 269 ± 53 283 ± 181

13 Average best-so-far 3.589×10−15 0 0.007 0
Standard deviation 3.139×10−15 0 0.01 0
p-value 3.759×10−6 1 1.734×10−6

Avg. num. iter. to convergence 909 ± 247 1 ± 0 18 ± 16 1 ± 0
14 Average best-so-far 0.5 0.5 0.5 0.5

Standard deviation 1.498×10−8 0 5.843×10−5 2.803×10−6

p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 2 ± 0 1 ± 0 1 ± 0 1 ± 0
15 Average best-so-far 1657.469 1600.337 - 1311.05

Standard deviation 617.404 275.922 - 263.918
p-value - 0 0
Avg. num. iter. to convergence - 53 ± 7 0 ± 0 299 ± 192

16 Average best-so-far -186.73 -186.73 -184.474 -186.73
Standard deviation 9.363×10−11 2.938×10−14 2.864 6.384×10−5

p-value 1.149×10−4 2.563×10−6 1.92×10−6

Avg. num. iter. to convergence 74 ± 40 16 ± 8 45 ± 29 38 ± 24

15

Table 8: Comparative results for the benchmark functions in Table 2 with population N = 50 and maximum
number of iterations 1,000.

F ALO PSO GSA CSGSA

17 Average best-so-far 2.605×10−11 0 0 0
Standard deviation 3.57×10−11 0 0 0
p-value 1.734×10−6 1 1
Avg. num. iter. to convergence 980 ± 14 1 ± 0 1 ± 0 1 ± 0

18 Average best-so-far 4.069 1.335 8.15 5.064
Standard deviation 6.395 2.915 8.833 6.584
p-value 0.416 0.024 0.051
Avg. num. iter. to convergence 716 ± 166 393 ± 372 378 ± 175 269 ± 217

19 Average best-so-far 1.214×10−8 2.52×10−206 5.998×10−18 2.37×10−4

Standard deviation 1.079×10−8 0 2.746×10−18 4.009×10−4

p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 996 ± 5 1000 ± 0 997 ± 4 342 ± 192
20 Average best-so-far 4.226×10−12 1.755×10−210 1.716×10−18 1.588×10−8

Standard deviation 1.797×10−12 0 6.75×10−19 2.64×10−8

p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 987 ± 10 1000 ± 0 997 ± 3 360 ± 215
21 Average best-so-far 2.788×10−8 0 4.441×10−12 6.379×10−16

Standard deviation 1.72×10−8 0 5.564×10−12 2.052×10−15

p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 886 ± 6 1 ± 0 758 ± 13 251 ± 215
22 Average best-so-far 3.826×10−10 3.347×10−209 5.838×10−18 5.648×10−6

Standard deviation 6.756×10−10 0 3.211×10−18 1.456×10−5

p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 994 ± 7 1000 ± 0 997 ± 4 327 ± 173
23 Average best-so-far -209.999 -209.999 -209.958 -147.396

Standard deviation 7.904×10−10 2.677×10−11 0.086 41.581
p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 149 ± 18 71 ± 13 189 ± 14 89 ± 101

Table 9: Comparative results for the benchmark functions in Table 3 with population N = 50 and maximum
number of iterations 1,000.

F ALO PSO GSA CSGSA
24 Average best-so-far 1.861×10−14 0 1.339×10−20 6.864×10−13

Standard deviation 2.443×10−14 0 1.405×10−20 3.129×10−12

p-value 0.024 1.734×10−6 7.712×10−4

Avg. num. iter. to convergence 976 ± 20 1 ± 0 990 ± 23 287 ± 304
25 Average best-so-far 9.752×10−16 0 7.538×10−22 1.523×10−11

Standard deviation 1.365×10−15 0 7.519×10−22 3.828×10−11

p-value 0.001 1.734×10−6 4.729×10−6

Avg. num. iter. to convergence 976 ± 16 1 ± 0 989 ± 11 540 ± 294
26 Average best-so-far -1.913 -1.913 -1.913 -1.913

Standard deviation 4.778×10−15 6.775×10−16 6.775×10−16 6.775×10−16

p-value 3.034×10−6 1 1
Avg. num. iter. to convergence 4 ± 2 2 ± 1 9 ± 10 5 ± 1

27 Average best-so-far - - - -
Standard deviation - - - -
p-value - - -
Avg. num. iter. to convergence - - - -

28 Average best-so-far 2.423×10−11 5.049×10−64 5.232×10−18 0.104
Standard deviation 1.635×10−11 2.751×10−63 2.334×10−18 0.125
p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 994 ± 6 1000 ± 1 994 ± 6 228 ± 194

16

Table 10: Comparative results for the benchmark functions in Table 4 with population N = 50 and maximum
number of iterations 1,000.

F ALO PSO GSA CSGSA

29 Average best-so-far 1.551×10−15 0 6.818×10−21 9.696×10−25

Standard deviation 2.102×10−15 0 7.797×10−21 3.472×10−24

p-value 1.734×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 977 ± 13 1 ± 0 989 ± 12 485 ± 236
30 Average best-so-far -1.031 -1.031 -1.031 -1.031

Standard deviation 9.32×10−15 4.516×10−16 4.516×10−16 7.884×10−11

p-value 0.112 0.125 0.125
Avg. num. iter. to convergence 19 ± 19 3 ± 2 18 ± 17 5 ± 2

31 Average best-so-far 0.333 0.622 0.666 0.669
Standard deviation 0.339 0.169 6.519×10−17 0.005
p-value 1.92×10−6 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 705 ± 295 93 ± 61 219 ± 9 56 ± 37
32 Average best-so-far 13.655 1.536 5.392 8.402

Standard deviation 31.104 1.287 0.132 0.535
p-value 9.626×10−4 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 800 ± 78 848 ± 156 499 ± 1 75 ± 74

Table 11: Comparative results for the benchmark functions in Table 5 with population N = 50 and maximum
number of iterations 1,000.

F ALO PSO GSA CSGSA

33 Average best-so-far 1.395 2.021 3.769 1.436
Standard deviation 0.669 1.381 2.904 0.614
p-value 0.141 0.205 3.112×10−5

Avg. num. iter. to convergence 67 ± 35 35 ± 24 22 ± 18 254 ± 173
34 Average best-so-far -0.999 -1 -0.833 -0.966

Standard deviation 4.399×10−12 0 0.379 0.182
p-value 3.112×10−5 1 0.218
Avg. num. iter. to convergence 154 ± 41 32 ± 8 66 ± 33 27 ± 6

35 Average best-so-far -6.688 -8.776 -9.289 -9.008
Standard deviation 1.126 0.553 0.174 0.523
p-value 2.126×10−6 0.171 0.049
Avg. num. iter. to convergence 255 ± 54 67 ± 22 251 ± 11 132 ± 86

17

Table 12: Comparative results for the benchmark functions in Table 6 with population N = 50 and maximum
number of iterations 1,000.

F ALO PSO GSA CSGSA

36 Average best-so-far 0.076 0.076 8.247×10−21 9.763×10−8

Standard deviation 0.232 0.232 8.917×10−21 5.162×10−7

p-value 0.044 0.002 1.92×10−6

Avg. num. iter. to convergence 879 ± 288 3 ± 7 985 ± 24 187 ± 113
37 Average best-so-far 0.397 0.397 0.123 0.397

Standard deviation 2.89×10−14 0 0.187 2.318×10−9

p-value 0 0 0
Avg. num. iter. to convergence 77 ± 37 9 ± 5 27 ± 45 31 ± 14

38 Average best-so-far 1.053 1.269×10−4 1.232 0.712
Standard deviation 2.384 1.362×10−4 1.589 1.044
p-value 0.428 1.734×10−6 0.452
Avg. num. iter. to convergence 844 ± 244 994 ± 6 543 ± 162 312 ± 193

39 Average best-so-far -6.02 -6.02 -6.02 -
Standard deviation 3.282×10−15 2.71×10−15 3.486×10−7 -
p-value - - -
Avg. num. iter. to convergence 2 ± 1 1 ± 0 1 ± 0 -

40 Average best-so-far 3 2.999 2.999 2.999
Standard deviation 1.77×10−13 8.287×10−16 2.008×10−15 8.53×10−16

p-value 1.723×10−6 0.289 1.242×10−4

Avg. num. iter. to convergence 35 ± 30 9 ± 5 154 ± 51 10 ± 1
41 Average best-so-far -3.862 -3.862 -3.862 -3.862

Standard deviation 9.429×10−15 3.161×10−15 3.161×10−15 3.062×10−15

p-value 1.893×10−6 1 1
Avg. num. iter. to convergence 7 ± 7 3 ± 1 15 ± 13 4 ± 2

42 Average best-so-far -3.126 -3.094 -3.134 -3.134
Standard deviation 0.043 0.09 4.516×10−16 4.087×10−13

p-value 0.044 0.791 4.882×10−4

Avg. num. iter. to convergence 68 ± 32 4 ± 2 131 ± 59 11 ± 4
43 Average best-so-far -3.005 -3.026 -3.042 -3.042

Standard deviation 0.03 0.027 1.355×10−15 1.069×10−8

p-value 5.086×10−4 0.909 1.227×10−5

Avg. num. iter. to convergence 79 ± 35 6 ± 2 198 ± 7 19 ± 6
44 Average best-so-far 6.617×1014 1.053×1012 1.367×1016 2.586×1014

Standard deviation 1.767×1015 3.705×1012 2.204×1016 7.185×1014

p-value 0.813 1.734×10−6 1.92×10−6

Avg. num. iter. to convergence 678 ± 209 940 ± 71 96 ± 147 347 ± 134
45 Average best-so-far 4.956×10−4 4.981×10−7 6.439×10−5 0.004

Standard deviation 2.998×10−4 5.621×10−7 5.455×10−5 0.004
p-value 1.493×10−5 1.734×10−6 1.734×10−6

Avg. num. iter. to convergence 922 ± 9 951 ± 54 712 ± 17 316 ± 211
46 Average best-so-far -7.558 -7.395 -6.644 -5.341

Standard deviation 3.054 3.445 2.482 2.368
p-value 0.005 0.025 0.008
Avg. num. iter. to convergence 121 ± 16 31 ± 6 117 ± 48 143 ± 197

47 Average best-so-far -361.032 -348.309 -177.279 -389.508
Standard deviation 26.534 15.721 192.849 5.577
p-value 1.36×10−5 1.734×10−6 1.024×10−5

Avg. num. iter. to convergence 116 ± 8 18 ± 3 57 ± 61 73 ± 55

Table 13: Percentage in which CSGSA performs equally or better than the compared methods in terms of the
converged fitness value and rate of convergence.

CSGSA vs. ALO CSGSA vs. PSO CSGSA vs. GSA
fitness (%) conv. (%) fitness (%) conv. (%) fitness (%) conv. (%)

Many Local minima functions (1-16) 69 100 54 46 83 67
Bowl shaped functions (17-23) 43 100 14 57 57 100
Plate shaped functions (24-28) 60 100 40 60 40 100
Valley shaped functions (29-32) 50 100 25 75 50 100
Step Ridges/Drops (33-35) 100 67 100 33 67 67
Other functions (36-47) 75 100 58 50 58 92

18

(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison performance of GSA, ALO, PSO and CSGSA for minimization of (a) F1, (b) F5, (c) F29,
(d) F41, (e) F42 and (f) F47.

19

Table A.1: The 47 benchmark functions.

Function Index Function Name Function Index Function Name

Many Local Minima Functions
1 Ackley Function 2 Bukin Function N.6
3 Cross-In-Tray Function 4 Drop-Wave Function
5 Eggholder Function 6 Gramacy and Lee (2012) Function
7 Griewank Function 8 Holder Table Function
9 Langermann Function 10 Levy Function
11 Levy Function N.13 12 Rastrigin Function
13 Schaffer Function N.2 14 Schaffer Function N.4
15 Schwefel Function 16 Shubert Function

Bowl-Shaped Functions
17 Bohachevsky Functions 18 Perm Function 0,d, β
19 Rotated Hyper-Ellipsoid Function 20 Sphere Function
21 Sum Of Different Powers Function 22 Sum Squares Function
23 Trid Function

Plate-Shaped Functions
24 Booth Function 25 Matyas Function
26 McCormick Function 27 Power Sum Function
28 Zakharov Function

Valley-Shaped Functions
29 Three-Hump Camel Function 30 Six-Hump Camel Function
31 Dixon-Price Function 32 Rosenbrock Function

Steep Ridges/Drops Functions
33 De Jong Function N.5 34 Easom Function
35 Michalewicz Function

Other Functions
36 Beale Function 37 Branin Function
38 Colville Function 39 Forrester et al. (2008) Function
40 Goldstein-Price Function 41 Hartmann 3-Dimensional Function
42 Hartmann 4-Dimensional Function 43 Hartmann 6-Dimensional Function
44 Perm Function d, β 45 Powell Function
46 Shekel Function 47 Styblinski-Tang Function

effect of the population size on the solution and convergence rate. Also, the choice of the hyper-
parameters for all mentioned meta-heuristic algorithms has a large effect on performance and they
should be optimized.

Appendix A.

20

Table A.2: Additional information for some benchmark functions.

Func. Additional Information

F1 Recommended variable values are a = 20, b = 0.2 and c = 2π

F9 For d = 2 : m = 5, c = (1, 2, 5, 2, 3), A =

3 5
5 2
2 1
1 4
7 9

F10 wi = 1 + xi−1

4
, for all i = 1, ..., d

F27 The recommended value of the b-vector, for d = 4, is: b = (8, 18, 44, 114)

F33 a =

(
−32 −16 0 16 32 −32 ... 0 16 32
−32 −32 −32 −32 −32 −16 ... 32 32 32

)
F35 The recommended value of m is m = 10
F37 The recommended values are a = 1, b = 5.1

4π2 , c = 5
π

, r = 6, s = 10 and t = 1
8π

F41 α = (1.0, 1.2, 3.0, 3.2)T , A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 , P = 10−4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

F42 α = (1.0, 1.2, 3.0, 3.2)T , A =

10 3 17 3.50 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

F43 α = (1.0, 1.2, 3.0, 3.2)T , A =

10 3 17 3.50 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

F46 m = 10, β =

1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T , C =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

21

(a) F1 (b) F2 (c) F3 (d) F4

(e) F5 (f) F6 (g) F7 (h) F8

(i) F9 (j) F10 (k) F11 (l) F12

(m) F13 (n) F14 (o) F15 (p) F16

Figure A.1: Many local minima functions [32].

(a) F17 (b) F18 (c) F19 (d) F20

(e) F21 (f) F22 (g) F23

Figure A.2: Bowl-shaped functions [32].

22

(a) F24 (b) F25 (c) F26 (d) F27

(e) F28

Figure A.3: Plate-shaped functions [32].

23

(a) F29 (b) F30 (c) F31 (d) F32

Figure A.4: Valley-shaped functions [32].

(a) F33 (b) F34 (c) F35

Figure A.5: Steep ridges/drops functions [32].

(a) F36 (b) F37 (c) F39 (d) F40

(e) F44 (f) F47

Figure A.6: Other functions [32].

References

[1] Baldi, P., Sadowski, P., Whiteson, D., 2014. Searching for exotic particles in high-energy
physics with deep learning. Nature communications 5, 4308.

[2] Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation 15, 1373–1396.

[3] Belkin, M., Niyogi, P., 2004. Semi-supervised learning on riemannian manifolds. Machine
learning 56, 209–239.

[4] Bellman, R., 1954. The theory of dynamic programming. Technical Report. The RAND
Corp.

24

[5] Van den Bergh, F., Engelbrecht, A.P., 2006. A study of particle swarm optimization particle
trajectories. Information sciences 176, 937–971.

[6] Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM computing surveys (CSUR) 35, 268–308.

[7] Chapelle, O., Schlkopf, B., Zien, A., 2010. Semi-Supervised Learning. 1st ed., The MIT
Press.

[8] Chen, J., Xin, B., Peng, Z., Dou, L., Zhang, J., 2009. Optimal contraction theorem for
exploration-exploitation tradeoff in search and optimization. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans 39, 680–691.

[9] Coifman, R.R., Lafon, S., 2006. Diffusion maps. Applied and computational harmonic analysis
21, 5–30.

[10] Doraghinejad, M., Nezamabadi-pour, H., 2014. Black hole: A new operator for gravitational
search algorithm. International Journal of Computational Intelligence Systems 7, 809–826.

[11] Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: optimization by a colony of coop-
erating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
26, 29–41.

[12] Gepshtein, S., Keller, Y., 2013. Image completion by diffusion maps and spectral relaxation.
IEEE Transactions on Image Processing 22, 2983–2994.

[13] Güvenç, U., Katırcıoğlu, F., 2017. Escape velocity: a new operator for gravitational search
algorithm. Neural Computing and Applications , 1–16.

[14] Hereid, A., Cousineau, E.A., Hubicki, C.M., Ames, A.D., 2016. 3D dynamic walking with
underactuated humanoid robots: A direct collocation framework for optimizing hybrid zero
dynamics, in: Proceeding of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 1447–1454.

[15] Holland, J., 1992. Genetic algorithms. Scientific American 267, 66–72.

[16] Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39,
459–471.

[17] Kaveh, A., Bakhshpoori, T., 2016. Water evaporation optimization: A novel physically
inspired optimization algorithm. Computers & Structures 167, 69–85.

[18] Kennedy, J., 2011. Particle swarm optimization, in: Encyclopedia of machine learning.
Springer, pp. 760–766.

[19] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al., 1983. Optimization by simulated annealing.
science 220, 671–680.

[20] Lafon, S., Lee, A.B., 2006. Diffusion maps and coarse-graining: a unified framework for di-
mensionality reduction, graph partitioning, and data set parameterization. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28, 1393–1403.

25

[21] Lande, R., 1988. Genetics and demography in biological conservation. Science (Washington)
241, 1455–1460.

[22] Liu, B., Zhang, Q., Gielen, G.G., 2013. A gaussian process surrogate model assisted evolu-
tionary algorithm for medium scale expensive optimization problems. IEEE Transactions on
Evolutionary Computation 18, 180–192.

[23] Medjahed, S.A., Saadi, T.A., Benyettou, A., Ouali, M., 2016. Gray wolf optimizer for hyper-
spectral band selection. Applied Soft Computing 40, 178–186.

[24] Mirjalili, S., 2015. The ant lion optimizer. Advances in Engineering Software 83, 80–98.

[25] Mirjalili, S., 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for
solving single-objective, discrete, and multi-objective problems. Neural Computing and Ap-
plications 27, 1053–1073.

[26] Mitchell, M., 1996. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA.

[27] Narimani, M.R., Vahed, A.A., Azizipanah-Abarghooee, R., Javidsharifi, M., 2014. Enhanced
gravitational search algorithm for multi-objective distribution feeder reconfiguration consid-
ering reliability, loss and operational cost. IET Generation, Transmission & Distribution 8,
55–69.

[28] Passino, K.M., 2010. Bacterial foraging optimization. Int. J. Swarm. Intell. Res. 1, 1–16.

[29] Porte, J.D.L., Herbst, B.M., Hereman, W., Walt, S.J.V.D., 2008. An introduction to diffusion
maps, in: In The 19th Symposium of the Pattern Recognition Association of South Africa.

[30] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. GSA: A gravitational search algorithm.
Information sciences 179, 2232–2248.

[31] Sindhwani, V., Belkin, M., Niyogi, P., 2010. The geometric basis of semi-supervised learning.
MIT press .

[32] Surjanovic, S., Bingham, D., 2017. Virtual library of simulation experiments: Test functions
and datasets. http://www.sfu.ca/~ssurjano.

[33] Tenenbaum, J.B., De Silva, V., Langford, J.C., 2000. A global geometric framework for
nonlinear dimensionality reduction. science 290, 2319–2323.

[34] Yang, X.S., 2010. Firefly algorithm, lévy flights and global optimization, in: Bramer, M., Ellis,
R., Petridis, M. (Eds.), Research and Development in Intelligent Systems XXVI, Springer
London, London. pp. 209–218.

26

