
A Stochastic Dynamic Motion Planning Algorithm for Object-Throwing

Avishai Sintov and Amir Shapiro

Abstract— A novel algorithm is proposed for offline motion
planning of a robotic arm to perform a throw task of an object
to reach a goal target. The planning algorithm searches for a
throw trajectory that could be performed under kinematic and
dynamic (i.e., kinodynamic) constraints. We parameterize the
throw trajectory by a time-invariant high-dimensional vector.
Then, the kinodynamic and target constraints are formulated
in terms of time and the parameterization vector. These con-
straints form time-varying subspaces in the parameterization
space. We present a stochastic method for finding a feasible and
optimal solution within the subspace. The method generates a
number of random points within the parameterization space
and checks their feasibility using an adaptive search. The
algorithm is guaranteed under a known probability to find a
solution if one exists. We present simulations and experiments
on a 3R manipulator to validate the method.

I. INTRODUCTION

A throw motion with the aim of having an object reach a
desired target task (position and orientation) out of the robots
reach at some time is a key component in many tasks such as
juggling, dynamic regrasping, non-prehensile manipulations,
and rapid part transfer/delivery. Research on robotic throwing
motion includes motion planning with simple low degree-of-
freedom robotic manipulators [1], [2] or the imitation of the
human arm motion pitching an object [3], [4]. Sampling-
based motion planners are commonly used for throwing
applications [5], a notion that we use in this work.

In such motion we encounter a problem of generating a
feasible trajectory under the kinodynamic constraints for the
end-effector to throw the object to the target. That is, finding
a trajectory that the arm can follow. This is a motion planning
problem. The common motion planning methods for such
problems are probabilistic sampling as analytical solutions
are difficult to obtain if not intractable [6]. Probabilistic
sampling methods are generally easy to implement with
relatively low complexity, good results, and efficiency in high
degrees of freedom systems. The most common probabilistic
methods are the Probabilistic Roadmaps (PRM) [7] and the
Rapidly-exploring Random Trees (RRT). The RRT was first
introduced in [8] as a randomized approach for kinodynamic
planning. It incrementally builds a roadmap tree in the state
space while integrating the control inputs to ensure that the
kinodynamic constraints are satisfied. Other versions and
extensions of the RRT are RRT∗ [9] and TB-RRT [10]. The
major problem with sampling methods is that the algorithm
does not know when to terminate its operation, how long the
algorithm should try to solve the problem before reporting
no solution [11]. This problem could cause long computation
time or miss feasible solutions. The proposed algorithm in
this paper tries to overcome this problem as well.

We present a novel offline method for finding an opti-
mal solution for the throw motion taking the kinodynamic
constraints into account. The key component of the algo-
rithm is parameterizing an analytic trajectory function. We
formulate the kinodynamic constraints of the problem in the
parameterization space. The formulated set of constraints
defines a time-varying subspace of the parameters space.
An easy-to-use numerical method is proposed for finding
a set of parameters that defines an optimal throw trajectory.
The numerical method is a stochastic algorithm where the
probability to find a solution, if one exists, is defined.

The paper is organized as follows. Section II defines
the motion planning problem. In Section III, we propose a
parameterization for the throw motion. Section IV formu-
lates the kinodynamic constraints. The formulated constraints
define the feasibility problem, which is solved in Section
V. In Section VI, we present simulations and experiments,
respectively, of a 3R manipulator in a throw motion.

II. PROBLEM DEFINITION

The equations of motion of a fully-actuated n-joint ma-
nipulator are given by

M(q)q̈ + C(q, q̇)q̇ + G(q) + Γ(q̇) = u, (1)

where q(t) = [ϕ1(t) ϕ2(t) ϕ3(t)]T ∈ Q is the configuration
of the system at time t, Q ⊆ Rn is the configuration space
of the manipulator and ϕi is the angle of joint i, u(t) =
[u1(t) u2(t) u3(t)]T ∈ Rn is the torque control vector, M is
an n × n inertia matrix, C is the n × n the centrifugal and
Coriolis matrix, and G is an n×1 vector of joint torques due
to gravitation force. Γ is a vector of Coulomb and viscous
friction torques at the joints given by

Γ(q̇) = sgn(q̇)Γc + q̇Γv, (2)

where Γc and Γv are the Coulomb and viscous friction
coefficients [12]. Moreover, we define T ⊆ Rm to be
the task space of the manipulators end-effector, that is, its
position and orientation relative to the worlds coordinate
frame (m = 3 in a planar manipulator and m = 6 in a
spatial manipulator).

We impose several constraints on the system. First, we
impose angle constraints on the arm joints defined by its
workspace, e.g., mechanical limitations of the joints. This
ensures that the configuration of the arm is within the allowed
subspace QWS ⊆ Q. Second, obstacles in the workspace
limit the motion of the end-effector. Therefore, the end-
effectors task is restricted from the subspace Tobs ⊂ T . We

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 2475

t = 0Tgoal

t = tr
p(t)

free-flight

t = tf

B
pf (t)

Fig. 1. Scheme of the throw trajectory of the end-effector and free-flight
motion of the object.

impose the configuration of the robot to be within the allowed
configuration space

Qallowed = QWS\(L
−1 ◦ Tobs), (3)

where L : Rn → Rm is a transformation from the configura-
tion space to the task space, i.e., direct kinematics. Note that
the inverse kinematics L−1(∙) can produce several solutions.
We take the same particular one at each time. Third, the joint
actuators limit the control inputs to the dynamic system in
(1). Explicitly, we can write that

|u(t)| ≤ umax, (4)

where umax is the maximum allowed joint torque. Moreover,
we add joint velocity constraints such that

|ω(t)| ≤ ωmax , (5)

where ωmax is the maximum allowed joint angular velocity.
The task of the end-effector is denoted as p(t) ∈ T , where
p(t) = L(q(t)) and ṗ(t) = J q̇(t) with J being the Jacobian
matrix of the manipulator.

An object B is held by the end-effector. The objective
of this problem is to generate a throw trajectory p(t) ∈
L ◦ Qallowed of the manipulator to toss the object into mid-
air such that it will finally reach a goal Tgoal ⊂ T in the
manipulators task space at some finite time tf ∈ [0,∞). Note
that the goal task is beyond the reach of the end-effector; that
is, Tgoal ∩ (L ◦ Qallowed) = ∅.

The above problem is therefore a motion planning prob-
lem under kinodynamic constraints. We present a novel
stochastic-based algorithm for motion planning of the given
manipulator to perform the throw task.

III. TRAJECTORY PARAMETERIZATION

In this section we present the parameterization of the
desired throw trajectory p(t) ∈ T . The motion is solely
defined by the throw motion from the initial pose at time
t = 0 to the release pose at time t = tr (Figure 1). After
release of the object, the motion of the object is defined as
free-flight and un-controlled.

We propose a method for parameterization of the throw
motion. We start with the parameterization of the release
moment t = tr. As mentioned, the free-flight trajectory is
defined only by the release task p(tr) = pr and velocity
ṗ(tr) = vr. However, in order to perform a smooth release,
the orientation of the end-effector at time of the release

should be defined by the direction of velocity. Therefore,
we present the following definition.

Definition 1. Let the map Zp : T 7→ Rm1 be a projection
map of the task (position and orientation) of the end-effector
onto its position space (m1 = 2 for a planar robot and
m1 = 3 for a spatial robot). And let Zo : T 7→ Rm−m1 be
the projection map of the task of the end-effector onto its
orientation space.

Hence, the release moment can be parameterized by the end-
effectors position Zp(pr) and task velocity vr ∈ Rm at time
tr. According to this definition, we constrain the orientation
of the end-effector to be co-linear to its linear velocity. That
is,

〈vee(Zo(pr)),v
l
r〉 = 1, (6)

where vee(∙) : Rm−m1 → Rm1 is a vector with direction
co-linear to the end-effector’s opening and vl

r ∈ Rm−m1 is
the linear velocity vector of the end-effector at release time
tr.

Defining the throw initial condition is sufficient to describe
the motion of the object after release. However, not all
motions of the end-effector can satisfy these conditions, if
such exist. The kinodynamic constraints limit the motions
that could be performed. Therefore, with the assumption that
at the beginning of the motion the manipulator is at rest
ṗ(0) = v0 = 0, we parameterize the initial task of the end-
effector p(0) = p0.

The time duration from time t = 0 to the release time tr
could also be used as a parameter. This adds another degree
of freedom to the motion such that excessive velocities or
torques might not be needed. Therefore, the parameteriza-
tion of the throw motion is fully defined by the following
parameterization vector (P-vector)

σ =
(

pT
0 Zp(pr)T vT

r tr
)T

∈ Ω, (7)

where Ω ⊆ R2m+m1 × R+. Vector σ is constructed of the
free parameters of the throw motion, and by defining their
values we define a single unique motion. A P-vector example
for a planar robotic arm is presented next.

Example 1. Given a fully actuated planar robotic arm, its
end-effectors task is defined as p(t) = [px(t) py(t) θ(t)]T ,
where px and py are the end-effectors position in the plane
and θ is its orientation angle with respect to the x-axis.
Therefore, from (7) we acquire the following P-vector:

σ =
(

px0 py0 θ0 pxr pyr vxr vyr vθr tr
)T

.
(8)

We add the co-linearity constraint from (6) as θr =
Atan2(vyr , vxr).

The motion from task p0 to task pr is defined by
cubic functions as p(t) = M ∙ z(t), where z(t) =
(1 t t2 t3)T is a vector of monomials and M is an
m× 4 matrix of coefficients. Given a P-vector σ, matrix M
could be fully defined according to the conditions at initial
and release time instances: p(0) = p0, ṗ(0) = 0, p(tr) =

2476

pr, ṗ(tr) = vr, where p0,pr,vr are given from vector σ
and therefore trajectory p(t) depends not only on time but
on σ as well. Thus, the trajectory should actually be denoted
as p(t, σ) = M(σ)z(t). From this, we can formulate the
joints position in terms of σ with the inverse kinematics:
q(t, σ) = L−1(p(t, σ)). It is optional to use a higher order
polynomial function such that the additional coefficients are
added to the P-vector in (7). This will add more degrees of
freedom for defining the motion and perhaps more solutions.

IV. CONSTRAINTS FORMULATION

In the previous section we defined the throw trajectory.
Next, we formulate the constraints presented in Section II in
terms of time and vector σ. Particularly, we formulate the
set of constraints G, which defines the feasibility region for
the throw motion, and present the set of constraints K that
defines whether the object reaches its goal.

Based on the definition of the throw trajectory in the task
space, we can re-write the systems constraints presented in
Section II. We classify the constraints into two classes: the
class derived from the kinodynamic constraints and the class
that defines if the current trajectory leads the thrown object
to its desired goal task Tgoal.

We start with the kinodynamic constraints. First, the
allowed configuration space QWS constraint is rewritten by
a1 analytical inequalities

Θk(q(t, σ)) ≤ 0, ∀k = 1, ..., a1 . (9)

For example, if we limit the joints maximum angle, (9) can
be q(t, σ) − θe ≤ 0. The same can be done to the task
space constraint where Tobs is formulated to a2 analytical
constraints

Λk(p(t, σ)) ≤ 0, ∀k = 1, ..., a2 . (10)

The torques constraint in (4) is imposed by the equations
of motion such that u(t, σ), which is calculated using (1)
with q = q(t, σ), is limited by an upper boundary umax.
Similarly, the angular velocity q̇(t, σ) = J−1ṗ(t, σ) is
constrained according to (5) by an upper bound ωmax.

The above re-formulated inequalities could now be written
as

Gk(t, σ) ≤ 0, ∀k = 1, ..., a, (11)

where Gk is the kth component of

G(t, σ) =







Θ(t, σ)
Λ(t, σ)

|u(t, σ)| − umax

|q̇(t, σ)| − ωmax





 (12)

and a = a1 + a2 + 2n.
The second kind of constraints are the ones that check

if the free-flight trajectory passes through the goal. After
release of the object at time tr, the object has a trajectory
of a projectile under gravity. We neglect other forces such
as drag. Thus, the objects trajectory is

pf (t) = −
1
2
ag(t − tr)

2 + ṗ(tr)(t − tr) + p(tr), (13)

where ag is the vector of gravitation. The parameters in
trajectory (13) are parameters of σ as defined in (7) and
therefore we can rewrite pf (t) = pf (t, σ). We describe the
tolerance for reaching the goal by an analytical expression
for Tgoal in terms of σ. In fact, the goal can have the form
of an hyper-rectangle in the task space such as pmin

goal <
pf (t, σ) < pmax

goal or a sphere, according to need. Moreover,
we can formulate a constraint on ṗf (tf , σ) to impose a
hitting direction of the target. Notice that we constrain not
only the position of the object in the target but also its
orientation. In general, we can formulate these constraints
in the form of

Kk(t, σ) ≤ 0, ∀k = 1, ..., b . (14)

Hence, a trajectory parameterized by σ hits the target if at
some time tg > tr inequality (14) is satisfied. Inequality
(14) could easily be solved analytically for t = tf and if
tf > tr(σ), then this trajectory hits the target.

The inequalities in (11) and (14) define the feasible region
of the dynamic system to perform the throw task in terms of
time and the desired trajectory represented by the P-vector
σ. That is, we obtained a set of analytical constraints that
defines a time-varying region in Ω-space.

V. SEARCH ALGORITHM

In previous section we have defined the constraints of the
problem as a time-varying subspace of Ω-space. A solution
for the above problem is a feasible and optimal vector σ∗ ∈
Ω.

A. The feasibility problem

First we define the feasibility set. Let Σ ⊂ Ω be a user
defined allowed region for σ. The range of set Σ is chosen
according to the workspace of the robotic arm. The range for
the time parameter in Σ is chosen according to the allowed
time frame for the motion.

Definition 2. A set Ωf ⊂ Ω is a feasible set in t ∈ [0, tr] if
Ωf ⊆ Σ and all σ ∈ Ωf satisfy inequality (14) at some time
tf > tr and inequality (11) for any t ∈ [0, tr].

That is, a vector σ ∈ Ω is in the feasibility set Ωf if it
is in Σ, it satisfies Gk(t, σ) ≤ 0 for all k = 1, ..., a, t ∈
[0, tr(σ)], and satisfies Kk(t, σ) for all k = 1, ..., b at some
time tf > tr(σ). The release time value tr is a function of
σ and is taken from its last component as defined in (7).
The definition of the feasibility set is illustrated in Figure 2
with a two-dimensional abstraction of the σ-space. Now, the
goal is to find an optimal vector σ∗ in the feasibility set Ωf .
Formally, the feasibility problem is as follows:

Problem 1. Find the vector σ∗ ∈ Ωf such that

σ∗ = arg min
σ

H(σ)

subject to σ∗ ∈ Ωf ,
(15)

where H(σ) is some cost function to minimize.

In other words, the above general problem is finding an
optimal vector σ∗ that is feasible and minimizes some cost

2477

σ1 σ2

t

G(tr, σ)

G(0, σ)

Ωf

K(t, σ)

tf

σ∗

tr

Σ

Fig. 2. A 3D illustration of the time-varying subspace defined by G(t, σ).

function H(σ) to be determined. Examples for such criteria
are a minimal time motion or distance maximization from
the constraints boundary. In the next subsection we present
an algorithm for finding the feasibility set and choosing an
optimal solution from it. The probability to find a solution
if one exists is also presented.

B. Feasibility search algorithm

A search algorithm is now presented to find a set Ωf of
feasible vectors. The domain formed by the set of constraints
in inequality (11) is non-linear, non-convex, and not contin-
uous due to composition of several constraints. Therefore,
an analytical solution of the reachable set is only possible in
rare and simple instances. We present a numerical search
algorithm to find a set of P-vectors satisfying the above
constraints. Further, we can choose one vector from the set
that best minimizes the cost function.

Algorithm 1 Throw trajectory search algorithm
Input: Sets of constraints G,K , probability Pmax, tolerance

εb, and allowed subset Σ ⊆ Ω.
Output: Optimal solution σ∗.

1: Calculate number of random points N such that the
probability to find a solution is more than 1 − Pmax.

2: Generate the set P = {σ1, ..., σN} of N uniformly
distributed random P-vectors within Σ.

3: for i = 1 → N do
4: if ¬(Is feasibile(σi, G,K, εb)) then
5: Remove σi from P .
6: end if
7: end for
8: Select σ∗ ∈ P which best minimizes cost function H(σ).
9: return σ∗.

The basis of the algorithm’s operation is generating a set
of N random points within the user-defined subspace Σ and
checking each for its feasibility. The throw trajectory search
algorithm is presented in Algorithm 1. The algorithm’s input
is the allowed set Σ in Ω determined by the user and the
set of constraints of inequalities (11) and (14). The first step

of the algorithm is to determine the number of random P-
vectors N such that the probability to find a solution is more
than a user defined probability 1−Pmax. The calculation of
N such that the probability not to find a solution if one exists
is Pmax can be shown to be

N ≥ −
1
ρ

log(Pmax) , (16)

where ρ is a user-defined value representing the allowed ratio
between the volume of Ωf and the volume of the pre-defined
region Σ. The determination of ρ is a resolution of how
close we allow the desired P-vector to be to the constraints
boundaries.

The next step is to sample N random points P =
{σ1, ..., σN} uniformly distributed in Σ. The allowed region
formed by Σ is a hyper-rectangle in Ω, and therefore we
sample points in each axis of Ω within the boundaries defined
by Σ. Such sampling provides a Poisson distribution over
the volume of Σ. The next step is going over all the N
points in P and filtering out those that are not feasible.
Such an operation is conducted by function Is feasible in
Algorithm 2. The release time tri is determined for each
point σi checked. First, we check if the trajectory of σi forms
a free-flight trajectory that hits the target. This is done by
using (14) for t = tfi and checking if tfi > tri . If not, this
P-vector is rejected. Next, we check if the constraints are
satisfied for a discrete time ti = {0, Δt1, Δt1+Δt2, ..., tri}.
Those that do not satisfy the constraints are eliminated
from set P . However, scanning the constraint G(ti, σi) for

Algorithm 2 Is feasibile(σi, G,K, εb)
Input: σi, the sets of constraints G,K and the tolerance εb.
Output: Boolean: True if σi is feasible, and False if not.

1: Extract tri
from the last component of σi.

2: Calculate tfi
from K according to (14).

3: if ¬(tfi
> tri

) then
4: return False.
5: end if
6: Calculate Smax. // using optimization prob. in (19).
7: while (t ≤ tri

) do
8: Calculate G̃i,t = max

j
{Gj(t, σi)}.

9: if ¬(G̃i,t < εb) then
10: Return False.
11: else
12: Calculate Δt = − G̃i,t

Smax
.

13: t = t + Δt.
14: end if
15: end while
16: Return True.

ti = {0, Δt, 2Δt, ..., tgi
} where Δt is a constant value is

rather risky. With rather large step size Δt, the value of G
might ascend over 0 and descend below again within the
discretized step size. On the other hand, too small step sizes
could be unnecessary and result in an overly long runtime.
Therefore, we propose simple adaptive step size methods

2478

Fig. 3. Adaptive check of two curves; In curve (a) a smaller step size
is taken as the curve approaches the zero line. Curve (b) is invalid as the
discretized points ascend above the εb limit.

to fine-tune the time steps and diagnose or rule out such
scenarios. First we define the maximal constraint value.

Definition 3. The constraint value of a feasible point σi at
time ti is defined to be

G̃i,ti = max
j

{Gj(ti, σi)} , (17)

where Gj is the jth component of the constraint vector G.

That is, the constraint value is the shortest distance from
point σi to the boundary of the closest constraint at all
time steps ti = [0, tgi]. Assume that the change rate of the
constraint value is bounded by

ΔG̃i,ti

Δti
≤ Smax, ∀ti ∈ [0, tgi

] . (18)

That is, the maximum slope of the constraint value G̃i,ti is
Smax. Under this assumption we can say that if at time ti the
constraints are satisfied, G̃i,ti < 0, then the minimum time
for the constraint to reach 0 is ti + Δtmin, where Δtmin =
−

G̃i,ti

Smax
. Therefore, as we get closer to a boundary of a

constraint, we decrease Δt such that reaching above the zero
line in that time frame is not possible. Figure 3 illustrates
the selection of Δt to be smaller as it approaches the zero
line and larger when receding from it. However, in this
adaptive approach, even though G̃i,ti

passes the zero line,
the algorithm will never do so as it will continue to decrease
Δt. Therefore, we bound such that the algorithm will stop
checking the current σi (and remove it) if εb < G̃i,ti

< 0.
The tolerance εb is user-defined with the same considerations
previously discussed for choosing ρ. This also serves as a
safety distance, assuring the solution is far enough from the
constraints boundaries. To calculate Smax we differentiate
the constraint vector by time to acquire its slope ∂G(t,σ)

∂t .
Smax is the maximum slope of all components over all time
and can be computed by the following maximization problem

Smax = max
t,σ,j

Sj(t, σ)

subject to 0 ≤ t ≤ t̃r, σ ∈ Σ,
(19)

Fig. 4. The throw goal.

where Sj is the jth component of the constraints derivative
S(t, σ) = ∂G(t,σ)

∂t and t̃r is the maximum possible goal time
based on the allowed time interval given in Σ. Problem
(19) could be computed analytically using Kuhn-Tucker
conditions or numerically.

We have acquired the feasibility set P , which is the
discrete representation of Ωf . The Final step of the algorithm
is to select the vector σ∗ ∈ P that best minimizes the
cost function H(σ). The optimal vector acquired is in fact
the joint trajectory q(t, σ∗), which satisfies the kinodynamic
constraints and minimizes the cost function. From here we
need to apply a non-linear control method to follow the
computed trajectory.

VI. SIMULATIONS & EXPERIMENTS

In this section we will demonstrate the algorithm’s op-
eration with simulations and experiments on a planar 3R
robotic arm. For simulations of the proposed method, the
algorithm was implemented in Matlab1 on an Intel-Core i7-
2620M 2.7GHz laptop computer with 8GB of RAM. The
simulations were conducted with a dynamic model of the
arm.

The aim of the simulation is to throw a planar disk into a
goal basket where a wall prevents direct access to the basket
as seen in Figure 4. The P-vector of this throw problem
is the one defined in (8). The physical limitations of the
arm are defined such that −150o ≤ φ(t) ≤ 150o and
−2[Nm] ≤ u(t) ≤ 2[Nm]. These limits along with the
workspace limitations were used to formulate the constraints
in the form of (11). The goal constraint of (14) is defined
by the x − y borders of the goal basket.

Based on the lengths of the links and joint capabil-
ities, we define set Σ such that the generated random
σ’s are within a hyper-rectangle defined by σmax =
[0.6m 0.6m 2π 0.6m 0.6m 1m/s 1m/s 4rad/s 3s] and
σmin = [−0.6m 0m 0 − 0.6m 0m − 1m/s − 1m/s −
4rad/s 0s]. We allow maximum motion time of tmax = 3s.
We arbitrarily chose the probability not to find a solution
to be Pmax = 2 × 10−10 and the allowed ratio to be
ρ = 9 × 10−4. Hence, according to (16) the minimum
number of points was selected and is N = 24, 814. With
these terms and constraints, after runtime of 0.48 seconds,
21 feasible solutions were found. The optimal solution with
a minimum time cost function was selected. The planned

1Matlab is a registered trademark of The Mathworks, Inc.

2479

Fig. 5. The trajectory (top) and torque signal (bottom) to the arm’s joints
to throw the disk into the goal.

Fig. 6. The planned trajectory of the disk to reach the goal and the measured
one in the experiments.

arm’s trajectory and control signal are presented in Figure 5
where satisfaction of the physical constraints can be seen.

An experimental setup was designed and built composed
of a planar robotic arm with three MX-106 Dynamixel ac-
tuators. The arm moves parallel to a 20o inclined air hockey
table so that the thrown object can slide with minimum
friction. A motion capture system (by OptiTrack) was set
to track the moving object’s trajectory. The object’s planned
and measured motion is shown in Figure 6. Due to joint
inaccuracies and backlashes, the motion is not exactly as
planned but the object reaches the goal as planned. Snapshots
of the throw experiment are shown in Figure 7.

VII. CONCLUSIONS

A novel algorithm was presented for throw motion plan-
ning under kinodynamic constraints. The key component of
the algorithm is the parameterization of the throw motion into
a high-dimensional vector. The algorithm generates random
P-vectors such that the probability to find a solution if one
exists is 1 − Pmax. Moreover, an adaptive step size search
algorithm was presented to select the feasible P-vectors
satisfying the kinodynamic constraints.

The runtime of the algorithm is very short and enables
fast and efficient computation. Moreover, it provides future
research in implementation of the algorithm to real-time

Fig. 7. Snapshots of the throw experiment.

motion planning problems. It can be shown that the overall
complexity of the algorithm is O

(
− tmaxSmax

εb
N
)

.

ACKNOWLEDGEMENTS

The research was partially supported by the Helmsley
Charitable Trust through the Agricultural, Biological and
Cognitive Robotics Center of Ben-Gurion University of the
Negev.

REFERENCES

[1] H. Miyashita, T. Yamawaki, and M. Yashima, “Control for throw-
ing manipulation by one joint robot,” in Proceedings of the IEEE
International Conference on Robotics and Automation, May 2009, pp.
1273–1278.

[2] K. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning and experiments,” International Journal of
Robotics Research, vol. 18, no. 1, pp. 64–92, January 1999.

[3] J. Kim, “Motion planning of optimal throw for whole-body humanoid,”
in Proceedings of the IEEE-RAS International Conference on Hu-
manoid Robots, Dec 2010, pp. 21–26.

[4] U. Mettin, A. Shiriaev, L. Freidovich, and M. Sampei, “Optimal ball
pitching with an underactuated model of a human arm,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA),, May 2010, pp. 5009–5014.

[5] Y. Zhang, J. Luo, and K. Hauser, “Sampling-based motion planning
with dynamic intermediate state objectives: Application to throwing,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), May 2012, pp. 2551–2556.

[6] J. Canny, The Complexity of Robot Motion Planning, ser. ACM
doctoral dissertation award. MIT Press, 1988.

[7] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation,, vol. 12, no. 4, pp.
566–580, 1996.

[8] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[9] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” CoRR, vol. abs/1005.0416, 2010.

[10] A. Sintov and A. Shapiro, “Time-based RRT algorithm for rendezvous
planning of two dynamic systems,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2014.

[11] K. Hauser, “Motion planning for legged and humanoid robots,” Ph.D.
dissertation, Stanford, CA, USA, 2008.

[12] B. Bona and M. Indri, “Friction compensation in robotics: an
overview,” in Proceedings of the IEEE Conference on Decision and
Control, Dec 2005, pp. 4360–4367.

2480

