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Abstract

Robotic manipulation of a wire by its ends requires rapid reasoning of its shape in real-time. A recent development
of an analytical model has shown that sensing of the force and torque on one end can be used to determine its shape.
However, the model relies on assumptions that may not be met in real world wires and do not take into account
gravity and non-linearity of the Force/Torque (F/T) sensor. Hence, the model cannot be applied to any wire with
accurate shape estimation. In this paper, we explore the learning of a model to estimate the shape of a wire based
solely on measurements of F/T states and without any visual perception. Visual perception is only used for off-line
data collection. We propose to train a Supervised Autoencoder with convolutional layers that reconstructs the spatial
shape of the wire while enforcing the latent space to resemble the space of F/T. Then, the encoder operates as a
descriptor of the wire where F/T states can be mapped to its shape. On the other hand, the decoder of the model is the
inverse problem where a desired goal shape can be mapped to the required F/T state. With the same collected data, we
also learn the mapping from F/T states to grippers poses. Then, a motion planner can plan a path within the F/T space
to a goal while avoiding obstacles. We validate the proposed data-based approach on Nitinol and standard electrical
wires, and demonstrate the ability to accurately estimate their shapes.
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1. Introduction

The manipulation of elastic wires is considered a dif-
ficult task to operate in industrial environments due to
the inability to reason about their shape in real time
[1]. Indeed, manipulation tasks in industrial applica-
tions such as assembly lines commonly handle only
rigid objects. Manipulation of wires, on the other hand,
remains in most cases to be operated manually. Rea-
soning about the shape of a wire along with manipu-
lation capabilities have various applications including
cable routing in automotive production lines [2], surgi-
cal suturing [3], knot tying [4], hot wire carving [5] and
aerial manipulation of cables [6]. Indirectly, the foun-
dations of this work may be applied to cloth folding [7],
protein folding [8], tissue manipulation [9, 10], hyper-
redundant robots [11] and multi-robot sheet manipula-
tion [12].
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The problem of estimating the shape of an elastic rod
has been addressed with various approaches. In [13], a
simulated discrete elastic rod model is fitted on data ob-
tained from camera images. Similarly, a Fourier series
was used to parameterize a cable segmented from an
image [14]. In a more recent work, the instabilities of a
rod were analyzed by identifying markers with a camera
and compared to a numerical simulation [15]. Seminal
work by Bretl and McCarthy [16] relied on a descrip-
tion of elastic rods in equilibrium as local solutions to
a geometric optimal control problem and showed that
the configuration space of the wire is a six-dimensional
smooth manifold. The configuration space was also
shown to be represented by the Force and Torque (F/T)
at the base of the rod. Later, Borum et al. [17] tracked
fiducial markers on a planar wire with a camera and fit-
ted them to the model of Bretl and McCarthy to estimate
the wire’s shape. However, visual perception and image
segmenting of thin objects such as a wire in a cluttered
environment is a challenging task. Moreover, relying
on continuous visual feedback limits the performance
of various tasks in which visual uncertainty (e.g., poor
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lighting or shadows) or occlusion may occur. This may
include manipulating the wire within a confined space
such as a vehicle frame.

As opposed to vision, using load measurements at
the tip of the wire does not require a line-of-sight. The
work in [18] demonstrated the estimation of a thin elas-
tic strip using a force sensor and based on a discretized
Kirchhoff elastic rod model. The work of Takano et al.
[19] relied on a discrete model and measured force and
torque to estimate the shape of a thin strip. These ap-
proaches are highly dependent on the resolution of the
discretization and directly proportional to computation
time. Recent work by the authors has proposed a full
framework for real-time shape estimation and control
of a wire solely using an F/T sensor and without any
visual feedback [20]. The work, however, relied on the
analytical model devised by Bretl and McCarthy. Since
the model does not take into account gravitation, non-
linearity of the sensors or other uncertainties, a Neural-
Network (NN) was included to calibrate the F/T sensor
to map between real sensed loads and theoretical ones
defined in the model. However, such process requires
solving the inverse problem for each sample where the
theoretical load is computed given a measured shape.
The computational complexity of such process is high
and may take a very long time. Once the F/T sensor has
been calibrated, real-time estimation requires repeated
solving of a system of ordinary differential equations to
find the corresponding shape of the rod. Each solution
is computationally expensive and the update frequency
remains low [21]. Hence, real-time applications may be
limited.

To cope with the computational complexity imposed
by wire shape computation, previous work has pro-
posed to pre-compute a roadmap within the free con-
figuration space of the wire as part of a path planning
problem [21]. However, the roadmap, acting as a de-
scriptor of the wire, represented only a small subset of
possible wire configurations. In this paper, we explore
data-based approaches to estimate the shape of the wire
given an F/T measurement. A trained Neural-Network
(NN) can be an higher-capacity descriptor of the wire
enabling rapid estimations of its shape.

In this work, we investigate whether a data-based
model can be learned and used for shape estimation of
the wire based on simple sensing. We propose to use the
Supervised and Convolutional Autoencoder (SnCAE)
to learn wire shapes. We rely on the revelation of the
work by Bretl and McCarthy [16] where the shape of
the wire can be represented in a low-dimension space.
An F/T measurement is then assumed to be an en-
coded state representation of the wire and can poten-

Figure 1: Shape estimation of a Nitinol elastic wire in two different
configurations using only a Force/Torque sensor on one gripper. The
wire configuration on the right is approximated and visualized in sim-
ulation (red curve), and compared to markers tracked (white markers)
with a motion capture system.

tially be mapped to its explicit shape. Hence, we train
the SnCAE which is a Supervised Autoencoder [22]
constructed with convolutional layers. The SnCAE re-
constructs the shape of the wire, based on collected data,
while also supervising the latent space to match corre-
sponding F/T states. Convolutional layers are included
in order to embed the spatial shape of the wire and ease
the learning. Once trained, the decoder of the SnCAE
is the shape estimator and can rapidly map F/T states
to wire shapes. Figure 1 shows an example where a
trained decoder is used for real-time estimation of the
spatial shape of a wire based on measured F/T and with-
out visual perception. Vision is used solely for collect-
ing training data. We test our approach on Nitinol and
standard electrical wires.

In addition to the decoder, the encoder of the SnCAE
provides the solution of the inverse problem where an
F/T state of the wire can be extracted from a desired
shape. Hence, planning in the space of F/T states can
be performed while the goal state is extracted using the
encoder from a measured shape (e.g., given cable rout-
ing channel). Similarly, wire shapes that result in col-
lision with obstacles can be mapped using the encoder
to F/T states and avoided in planning. To demonstrate
planning with the learned model, the same training data
is used to train an NN to map an F/T state to the corre-
sponding pose of one gripper relative to the first. Then, a
motion planner is implemented where the encoder iden-
tifies goal F/T states and the decoder acts as a collision
checker. To summarize, the contributions of this work
are as follows:

• We propose a data-based framework to estimate
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the shape of a wire based solely on F/T measure-
ments.
• An NN architecture is proposed based on the Su-

pervised Autoencoder. The Autoencoder, com-
posed of an encoder and decoder, is forced to em-
bed the F/T space of the wire in the latent space.
The decoder can be used for mapping F/T sensing
to the shape of the wire.
• In addition to the decoder, the encoder provides

a solution to the inverse problem where a desired
shape of the wire is mapped to the required F/T
state.
• Convolutional layers are used to embed the spatial

shape of the wire in the model.
• Unlike prior work, the proposed model embeds un-

certainties such as non-linearity of the F/T sensor,
initial wire curvature and non-homogeneity.
• An additional model maps F/T sensing to the pose

of the second gripper relative to the base gripper.
• The proposed models are demonstrated in path

planning and manipulation of Nitinol and electric
wires.
• The work shows that F/T measurements can be

mapped to wire shapes even if the wire does not
cope with the assumptions made by Bretl and Mc-
Carthy [16], e.g., we learn mapping for a non-
homogeneous electric wire with initial curvature.

To the best of the authors’ knowledge, this is the first at-
tempt to fully describe the shape of a wire using a data-
based model and based on F/T measurements. While
additional work must be done for generalization, our
approach is a first step towards accurate description of
wires without dependence on limited analytical models.

2. Related Work

In this section, we survey some topics related to the
manipulation of deformable objects and, in particular,
elastic wires. The manipulation of deformable objects
has been widely researched [23]. Early work used finite
element modeling to study the control of static defor-
mations of sheet metal parts handled by two manipu-
lators [24]. In [23], position control was used to ma-
nipulate a flexible object with multiple robots while ap-
plying vibration suppression at each contact. Different
approaches considered the deformable object as a con-
trolled dynamic system [25, 26].

Robotic manipulation of a wire was traditionally con-
sidered in the configuration space of its two ends or of-
ten of the two grippers grasping them. However, mul-
tiple solutions of wire shape exist for a single configu-
ration of the ends. In addition, a representation for the

shape of the wire has infinite dimension. These chal-
lenges hinder the motion planning of a wire. Early work
on path planning for elastic wires suggested the sam-
pling of gripper displacements and using numerical sim-
ulations to approximate their effect on the wire [27, 28].
Later work relaxed gripping points constraints while
planning a collision-free path for a sphere around a pre-
defined central grip point [29]. Different approaches
use numerical methods to describe the curvature of the
deformed wire [30, 31]. However, the above meth-
ods are computationally expensive making them hard
to perform well. Simplification of the model for the de-
formed object is another approach where a sequence of
rigid masses with springs is used to represent the ob-
ject [32, 33]. In such approach, the solution is highly
sensitive to the approximation which in turn affects the
quality of the planning.

In all the cited approaches, a feasible procedure to
derive the free configuration space of a wire was not
clear at that time. As discussed in previous section,
Bretl and McCarthy later showed that the configuration
space of the wire, i.e. the set of all equilibrium configu-
rations, is a six-dimensional smooth manifold [16, 34].
They also provided a computational test to determine
whether an equilibrium configuration on the manifold
is stable or not. This enabled the use of sampling-based
planning algorithms [35] to be used in which configu-
rations of the wire could be sampled directly. Further
research following the work of Bretl and McCarthy ex-
plored additional planning properties in the free config-
uration space of the wire [36, 37]. An important work
has provided the insight that the free configuration space
is path-connected and a semi-analytical feasible path
can easily be found [38].

While making a breakthrough, the work of Bretl and
McCarthy imposed strong assumptions for the wire to
be straight in the undeformed state and ignored the ef-
fects of gravity. Nevertheless, recent work have shown
that adding the Darboux vector to the model can be used
to include distributed forces such as gravity and initial
wire curvature [39]. The approach was demonstrated
on short rubber rods with low gravity influence. In ad-
dition, the approach remains to be based on an analyt-
ical model with no ability to cope with various model
uncertainties such as gripper inaccuracies, intrinsic non-
linearity of the sensor and non-homogeneity of the wire.

While less related to the presented work, it is also
worth mentioning additional work related to perception
and manipulation of linear elastic objects. Recent work
demonstrated model-based control for manipulation of
ropes on a plane with a single robot arm [40]. Image
perception is used for estimating the state of the rope
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and the robot can grasp any point along it for a manip-
ulating action. Similar work used synthetic depth im-
ages to train a policy for such manipulation on a plane
[41]. In [42], a data-driven model was proposed for the
dynamics of a rope in various manipulation tasks. The
state definition of a rope was degraded to some small
set of points on it while not putting state estimation
in scope. In a different work, shape estimation of de-
formable objects was obtained through RGB-D percep-
tion in an occluded scene [43].

3. Background

We briefly present the theoretical background from
Bretl and McCarthy [16] set to be the baseline to our
work. Given a wire of length L, the following model
assumes that it is straight in the undeformed configu-
ration with high enough stiffness in which the effects
of gravity are neglected. Using t ∈ [0, L] to denote arc-
length along the wire, the position and orientation of the
wire at arc-length t are described by a continuous map
q : [0, L]→ S E(3) given by

q(t) =
[
R(t) p(t)

0 1

]
, (1)

where R(t) : [0, L] → S O(3) and p(t) : [0, L] → R3 are
curvature and position functions, respectively. Illustra-
tion of the wire is seen in Figure 2. According to the
Kirchhoff model, a wire is unshearable and inextensible
while allowed to bend or twist [44]. These are enforced
by requiring q to satisfy

q̇ = q
(

û e1
0 0

)
, (2)

for some function u : [0, L] → R3, where overdots de-
note differentiation with respect to t, the map ̂: R3 →

so(3) satisfies a × b = âb for all a, b ∈ R3, and
e1 = [1 0 0]T .

Both ends of the wire are held by two robotic arms
with grippers. The position and orientation of each
point q(t) on the wire is represented relative to the base
gripper at t = 0 such that q(0) = I, where I ∈ S E(3) is
the identity matrix. This establishes the initial condition
for differential equation (2).

We define the set A ⊂ R6 by

A = {a ∈ R6 : (a2, a3, a5, a6) , (0, 0, 0, 0)} (3)

The set A is simply R6 with a two-dimensional plane
removed. Each point in A corresponds to an equilib-
rium configuration of the wire and a local minimum of
the total elastic energy of the wire. Proof for this can

Figure 2: Illustration of an elastic wire (gray).The shape of the wire
is given by the position and curvature functions p(t) ∈ R3 and
R(t) ∈ S O(3), respectively, where t ∈ [0, L] is the arc-length along
the wire. The position and orientation of each point along the wire is
represented relative to the base gripper at t = 0. In addition, the pose
of the second gripper at t = L is given by b ∈ B ⊂ S E(3).

be viewed in Theorem 5 of Bretl and McCarthy [16].
Thus, one can solve the following six ordinary differen-
tial equations

dµ1

dt
=
µ3µ2

c3
−
µ2µ3

c2

dµ4

dt
=
µ3µ5

c3
−
µ2µ6

c2

dµ2

dt
= µ6 +

µ1µ3

c1
−
µ3µ1

c3

dµ5

dt
=
µ1µ6

c1
−
µ3µ4

c3

dµ3

dt
= −µ5 +

µ2µ1

c2
−
µ1µ2

c1

dµ6

dt
=
µ2µ4

c2
−
µ1µ5

c1
(4)

on the interval t ∈ [0, L] with the initial condition µ(0) =
a for a ∈ A. In addition, c1 > 0 is the torsional stiffness
of the wire and c2, c3 > 0 are the bending stiffnesses.
Furthermore, u1 : [0, L] → R and u2, u3 : [0, L] → R
are the twisting and bending strains along the wire, re-
spectively, such that u = (u1, u2, u3)T and ui = µi/ci for
i = 1, 2, 3. Solving (2) with the resulting u produces
an equilibrium shape of the wire, denoted by the pair of
functions (q,u). Each (q,u) and the corresponding µ are
completely defined by the choice of a ∈ A. Therefore
and in practice, A serves as the configuration space of
the wire. Since we care only about the shape of the wire,
we define map p(t) = Φ(a) where p(t) is extracted from
q according to (1). Map Φ is injective, i.e., for each p
there exists a unique a ∈ A. In addition, one can define
subspace B ⊂ S E(3) which is the space of poses of the
second gripper and is given by b = q(L) ∈ B where q
relates to some a.

Function µ : [0, L] → R6 is interpreted as the vector
of internal forces and torques along the wire. Hence,
one can describe the force and torque at point t along
the wire as

f(t) = (µ4(t), µ5(t), µ6(t))T (5)

τ(t) = (µ1(t), µ2(t), µ3(t))T , (6)

respectively, where µ j(t) is the jth component of µ(t)
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[16]. Since Φ is injective, any equilibrium configura-
tion a = µ(0) is completely defined by the force f(0)
and torque τ(0) at the base gripper. In other words, by
solely measuring the load exerted on the gripper using
an F/T sensor, one can directly acquire configuration a
and, using Φ(a), solve for the shape of the wire p. In
addition, the load measurement can be used to extract
the expected pose of the second gripper b with respect
to the base gripper.

4. Method

4.1. Problem Statement
An elastic wire of length L and mechanical coeffi-

cients c = (c1, c2, c3)T is held by a dual-arm robotic
system. Furthermore, a Force/Torque (F/T) sensor is
mounted on one arm and measures the load a ∈ AFT

exerted by the wire where AFT is the space of mea-
sured wire F/T states. Inspired by the analytical model
presented in the previous section, we hypothesize that
mapping from F/T measurements to wire shape can be
learned from collected data while taking uncertainties
into account. Therefore, we explore the learning of a
discrete map Γ : AFT → R3 × . . . × R3. Hence, given
a measurement a ∈ AFT of the F/T sensor, the map will
output a set of m points Γ(a) = {p1, . . . ,pm} along the
wire where p j = p( j

m ) ∈ R3 for j = 1, . . . ,m.

4.2. Pose estimation using the Analytical Model
As discussed in previous work [20], a measurement

a of the F/T sensor cannot directly be applied to extract
the shape with model Φ(a). Many uncertainties such as
gravitation, gripper inaccuracies, intrinsic non-linearity
of the sensor and non-homogeneity of the wire, were
not reflected by the assumptions of the model. Hence,
the previous work proposed an NN calibration model
to map a measured F/T load a j to the theoretical wire
configuration a j. To do so, a dataset is collected by
manipulating a wire with known length and coefficients
c through various configurations while recording, for
each, the F/T measurement a j and the corresponding
set of V marker locations F j = {p j,1, . . . ,p j,V }. Point
p j,k ∈ R3 is the spatial position of marker k relative to
the base gripper measured with a motion capture sys-
tem. For each sample F j, we solve the inverse problem
a j = Φ

−1(F j) to compute the theoretical wire configu-
ration a j. This was done by solving the following mini-
mization problem

a j = arg min
a

V∑
k=1

∥p j,k − xk(a)∥2 (7)

where xk ∈ R3 is the closest point to p j,k on a wire
p = Φ(a). Problem (7) is non-linear and therefore was
solved with a meta-heuristic global optimizer such as
Particle Swarm Optimization (PSO) [45]. The calibra-
tion model is, then, a NN model ψ trained with dataset
{(a j, a j)N

j=1}where N is the number of collected samples.
Given F/T measurement ai, the shape of the wire is then
computed with p(t) = Φ(ai) for ai = ψ(ai).

Solving inverse problem (7) for each sample is com-
putationally expensive. Furthermore, in order to acquire
a fine calibration model, one must collect a large amount
of samples and with high variance. Such process may
take very long time while insufficient data yields low ac-
curacy as will be demonstrated in the experiments. Even
with enough data points, the model may not sufficiently
represent the behaviour of the query wire due to various
non-modeled properties. In this work, we take a differ-
ent approach where we directly map F/T measurements
to wire shapes and, by that, incorporate all uncertain-
ties in the model. Therefore, explicit knowledge of co-
efficients c is not required nor the tedious solution of
inverse problem (7).

4.3. Data Collection
Training data is collected by sampling M wire

shapes along with their corresponding F/T measure-
ments. Sampling a continuous representation of the
wire shape can be done in several ways including shape
segmentation from RGB cameras or from a depth cam-
era if the wire is thick enough. In this work, a motion
capture system tracks V reflective markers fixed along
the wire. It is noted that the motion capture system is
used only for data labeling while deployment is done
solely based on F/T sensing. Furthermore, while the ap-
proach provides a coarse resolution along the wire, the
marker positions are acquired with high accuracy. Sam-
ple j taken from the system is in the form (a j,F j) where
F j = {p j,1, . . . ,p j,V }.

To provide a finer representation of the wire given F j,
we search for a parametric curve function f : R → R3

that would represent the wire with higher resolution. In
practice, parametric curve

f(t) = ( fx(t), fy(t), fz(t))T (8)

could be represented by polynomial functions of degree
h such that

fx(t) =
h∑

k=0

sx,ktk, fy(t) =
h∑

k=0

sy,ktk, fz(t) =
h∑

k=0

sz,ktk

where s j,k are coefficients to be optimized. Curve func-
tion f(t) that best fits points F j can be obtained by the
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least-squares method and is the solution of

min
υ

V∑
k=1

∥p j,k − f(t)∥2 (9)

where υ is the vector of all polynomial coefficients in
f(t). Problem (9) can be solved rapidly with parametric
curve fitting [46]. In brief, an iterative algorithm asso-
ciates value ti to pi by locally minimizing ∥pi − f(ti)∥2

and ensuring that ti < ti+1. With the acquired para-
metric curve fit, we generate m equally spaced points
P j = {p1, . . . ,pm} along the wire (m ≫ V). These
m points are considered an higher resolution represen-
tation of the sampled wire and further used for learn-
ing map Γ. Finally, the generated training data consists
of M samples in the form D = {(ai,Pi)}Mi=1. For each
ai sample, we also record the corresponding pose of
the second gripper bi. Hence, we have another dataset
V = {(ai,bi)}Mi=1 for motion planning as will be dis-
cussed later.

4.4. Learning Model: Supervised and Convolutional
Autoencoder

A Fully-Connected NN (FC-NN) model can be di-
rectly trained with D to acquire an approximation of Γ.
In such case, the input would be six-dimensional while
the output is the flattening of P to a vector of dimen-
sion 3m. However, such vector representation loses the
spatial relationship between coordinates along the wire
and may affect accuracy. Alternatively, we propose to
incorporate convolutional layers in order to embed spa-
tial computation in the model and allow parameter shar-
ing. On top of that, we train a Supervised Autoencoder
(SAE) model [22] to augment the learning and acquire
an inverse solution Γ−1 along the way. Hence, we fur-
ther describe the architecture of the proposed Super-
vised and Convolutional Autoencoder (SnCAE) to learn
wire shape representation.

A standard Autoencoder (AE) is a neural-network
aimed to find a lower-dimensional embedding of some
data, i.e., dimensionality reduction [47]. AE is trained
to reconstruct the input at the output through an encoder
and a decoder. The encoder is used to identify embed-
ded information in the data and compress it to a latent
representation z ∈ Rd where dimension d is lower than
the one of the input data. The decoder, on the other
hand, reconstructs the original data from the latent rep-
resentation. AE is normally trained to reconstruct input
data X by minimizing the objective function ∥X − X′∥2

where X′ is the output of the decoder. AE is capable
of learning complex non-linear relations where simpler
models of dimensionality reduction under-perform.

As mentioned, we preserve the spatial representation
of the wire by having the input and reconstructed output
to the encoder and decoder, respectively, as m × 3 ar-
rays (each row is a point along the wire). Therefore, the
input to the encoder passes through a convolution with
an mc × 1 kernel yielding a convolutional layer of size
m × 3 × ma. The data then passes through a set of three
fully-connected layers of size 3m·ma×1, mb×1 and 6×1
as seen in Figure 3. The latent space is six-dimensional
to match the size of the F/T state. The encoder and de-
coder are mirrored while the output of the decoder goes
through a de-convolutional layer of size mc × 1 yielding
an m × 3 array. ma, mb and mc are hyper-parameters to
be further optimized. Therefore, the reconstruction loss
is given by

Jr = ∥P − P ′∥2. (10)

While the AE is an unsupervised method, SAE is a
variation of AE where the model also supervises the rep-
resentation of the latent space. Based on prior work dis-
cussed above, the latent representation of a wire shape
is known to be six-dimensional. Hence, we set the latent
layer in the AE to be d = 6, i.e., z ∈ R6. Furthermore,
we add a soft constraint on the latent space to minimize
the distance to a ∈ AFT . Hence, we formulate a latent
loss value in the form of

Ja = ∥z − a∥2. (11)

Additionally and for regularization, for each batch of
data, we compare the reconstruction of P with either
using z or a in the decoder. Consequently, we train the
SnCAE to minimize a combined loss function

J = Jrz + Jra + wJa (12)

where Jrz and Jra are the reconstruction loss when ap-
plying z and a to the decoder, respectively. Scalar w > 0
is a tunable weight. An illustration of the SnCAE is
given in Figure 4. Preliminary analysis has shown that
adding Jra to the loss improves accuracy by approxi-
mately 25%. A trained SnCAE with minimal loss J
can reconstruct wire shape data while giving a physical
and practical meaning to the latent space.

The trained SnCAE has two usages as seen in Fig-
ure 5. First, the decoder is the approximated mapping
Γ which maps a measured ai to the spatial shape of the
wire Pi. In other words, we can use the decoder as a
shape estimator based on F/T sensing at the base grip-
per. Furthermore, the encoder provides a fast inverse so-
lution instead of problem (7), i.e., ai = Γ

−1(Pi). There-
fore, the encoder can be exploited to estimate the re-
quired F/T load at the base gripper, i.e., wire state in
AFT , based on a desired shape of the wire.
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Figure 3: Convolutional layers constructing the encoder and decoder

Figure 4: Framework of the Supervised and Convolutional Autoencoder (SnCAE).
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Figure 5: The usages of the trained models given measurements from
a grasped wire. The decoder of the SnCAE is used to map an F/T
measurement to the shape of the wire, i.e., Pi = Γ(ai); The encoder of
the SnCAE solves the inverse problem and maps a measured shape of
the wire to an estimated F/T load at the base gripper, i.e., ai = Γ

−1(Pi);
Model Λ approximates the pose of the second gripper given an F/T
measurement, i.e., bi = Λ(ai).

We note that an NN architecture similar to the de-
coder of the SnCAE, termed Decoder CNN (D-CNN),
can be trained independently as an alternative to the
SnCAE. In D-CNN, model Γ is trained directly with-
out the encoder to map an F/T measurement ai to wire
shape Pi as seen in Figure 6. Hence, the model is trained
to minimize loss

JD = ∥Pi − Γ(ai)∥2. (13)

However, D-CNN provides only shape estimation while
the SnCAE provides both shape estimation and inverse
model within the same training. The D-CNN will also
be analyzed in the experiments.

4.5. Motion planning over F/T states
A wire configuration ai ∈ A is given along with its

corresponding second gripper pose bi ∈ B. We define an
homogeneous transformation matrix M ∈ S E(3) with
δx ∈ R3 and exponential coordinates y ∈ R3 and δθ ∈
[0, π) such that

M(δb) =
[
eyδθ δx
0 1

]
for δb =

(
yδθ
δx

)
. (14)

Matrix M is defined to map between two configurations
in B such that

bi+1 = biM(δb) (15)

Figure 6: Architecture of the Decoder CNN (D-CNN) used as a base-
line comparison.

where perturbation to bi+1 will result in wire configura-
tion ai+1. From Theorem 7 and equation (37) in [16],
we get that

δb ≈ J(L)δa (16)

where δa = ai+1−ai. Matrix J(L) is the Jacobian relying
on the solution of the above ordinary differential equa-
tions and is detailed in [20, 21]. Equation (16) states
that matrix J(L) contains information about the relation-
ship between small changes in A and small changes in
B. Therefore and given a desired ai+1 in the vicinity of
ai, the required perturbation δa in A can be obtained.
Then, by solving (16), one can use map (15) to compute
the required perturbation in B in order to move a wire
from configuration ai to ai+1.

A data-based approach and a learned map Γ do not
enable the extraction of an explicit representation of
the Jacobian. Furthermore, the non-linearity of the F/T
sensor does not guarantee that perturbation δa can be
mapped to the same δb for any ai ∈ AFT . Alternatively,
we propose to directly learn mapping from ai to bi, i.e.,
Λ : AFT → B. Once having map Λ, we can extract
the required gripper perturbation δbi from bi = Λ(ai) to
bi+1 = Λ(ai+1) according to (14)-(15). With dataset V ,
an FC-NN is trained to learn map bi = Λ(ai) (Figure
5). It is noted that map Γ can only provide the position
of the second gripper while Λ provides the full pose in
S E(3).

Matrix bi ∈ S E(3) contains a rotation matrix Rbi

and the position vector. While the latter is easy to en-
code, direct encoding of rotation matrices for NN train-
ing cannot be done while maintaining orthonormality.
Hence, we encode bi with a nine-dimensional vector by
flattening the position vector along with two columns
(v1, v2) of the matrix. Reconstruction of the rotation
matrix Rbi

given output (v1, v2) from the NN is done
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using the Gram–Schmidt process [48] according to

w1 =
v1

∥v1∥

u2 = v2 − (w · v2)w1

w2 =
u2

∥u2∥

Rbi
= [w1 w2 w1 × w2] .

Model Λ could be used to plan motion to a de-
sired goal as follows. Given a wire shape goal Pg, the
F/T state goal is the solution of the inverse problem
ag = Γ

−1(Pg) computed with the encoder of the SnCAE.
A motion planner would output a continuous path γ :
[0, 1] → AFT from the current start γ(0) = as ∈ AFT to
a desired one γ(1) = ag ∈ AFT . Furthermore, decoder
mapping Γ is used as a collision checker where shapes
of candidate F/T states are validated to be collision free.
We check wire collision with obstacles or with the robot
and wire self-collision. A sampling-based motion plan-
ner can then be used for finding a collision-free path
[35]. In this work, we employ the asymptotically opti-
mal variant of the Rapidly-exploring Random Tree, i.e.,
RRT∗ [49]. The RRT∗ planner finds a path from as to
ag while minimizing path length in AFT . Once path γ is
acquired, a step from ai to ai+1 along the path is trans-
lated to perturbation command δbi of the second gripper
from bi = Λ(ai).

5. Experiments

Our experiments are based on a setup comprised of
the Yaskawa Motoman SDA10F dual-arm robot seen in
Figure 7. A six-axis F/T sensor (Bota SensONE) with
a gravity compensation module was mounted on its left
arm. Furthermore, chuck grippers on both arms fix the
wires. A set of V = 11 reflective markers was posi-
tioned along the installed wire so that a motion capture
system is able to provide ground-truth measurements of
its shape in real-time. The system is controlled using
the Robot Operating System (ROS) over an Ubuntu ma-
chine. Videos of the experiments and demonstration can
be seen in the supplementary material.

5.1. Shape estimation analysis
We evaluate shape estimation on two wires seen in

Figure 8: a Nitinol wire of 2 mm diameter and 820 mm
length, and a standard electrical wire of 3 mm diame-
ter and 500 mm length. The electrical wire does not
meet the ground assumptions of [16] and was shown
in [20] to yield large approximation errors when using
the analytical model. Data was collected as discussed

Figure 7: Experimental setup based on a dual-arm robot.

Figure 8: Electrical (top) and Nitinol (bottom) wires used in the ex-
periments.

Table 1: Results for Nitinol and Electric wires shape estimation using
various models

Model Mean error (mm)

Nitinol

Analytical model [20] 37.14±16.48
FC-NN 12.16±5.26
SnCAE (with Decoder) 10.70±0.25
D-CNN 11.20±0.17

Electric
Analytical model [20] 56.29±19.18
FC-NN 28.2±6.12
SnCAE (with Decoder) 22.6±0.57

Table 2: Computation time for Nitinol and Electric wires shape esti-
mation using various models

Model Comp. time (msec)
Analytical model [20] 72.22±11.40
FC-NN 0.18±0.19
SnCAE (with Decoder) 1.83±5.26
D-CNN 1.72±5.07

Figure 9: Shape estimation accuracy of the Nitinol wire with regards
to the number of collected samples and for FC-NN and SnCAE.
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Figure 10: Shape estimation accuracy of the electric wire with regards
to the number of collected samples and for FC-NN and SnCAE.

Table 3: Accuracy of inverse solution with the SnCAE encoder
Wire Force error (N) Torque error (Nm)
Nitinol 0.34±0.28 0.038±0.032
Electric 0.52±0.11 0.051±0.016

in Section 4.3 while sampling MNitinol=26,187 and
MElectric=15,400 Nitinol and electric wire shapes, re-
spectively, and their corresponding F/T measurements.
For each sample, an h = 6 degree polynomial function
was fitted and m = 100 equally spaced points were gen-
erated along it. Training set D is, therefore, comprised
of F/T measurements and their corresponding polyno-
mial approximation of the shape. In addition, test sets
were collected independent of the training set and in-
cluded approximately 1, 200 samples. Shape estimation
error is defined as the Root-Mean-Square-error (RMSE)
between measured marker positions of a test shape and
the closest points of the predicted polynomial shape
(based on corresponding F/T measurement).

We first analyze the shape estimation of the Nitinol
wire. Using dataset D, we train the proposed SnCAE
model along with FC-NN and D-CNN models for com-
parison. In addition, we also provide results for the
analytical model as implemented in [20]. Hence, op-
timization problem (7) was solved for each sample in
D taking approximately 48 hours in total. With the
solutions, we train NN model ψ to map F/T measure-
ments to theoretical wire configurations enabling the
solution of p(t) = Φ(ψ(ai)). On the other hand, the
other NN models were optimized to yield the lowest
shape estimation error. The optimal FC-NN model is

Table 4: Roll-out errors along planned paths

Error Shape Force Torque
(mm) (N) (Nm)

Goal reach 4.5±2.9 0.23±0.18 0.041±0.027
Path tracking 6.1±3.3 0.36±0.29 0.066±0.055

composed of one hidden layer of 119 nodes, Rectified
Linear Unit (ReLU) activation function and a regular-
izer of 8.8 × 10−7. The optimal hyper-parameters of the
SnCAE model are ma = 16, mb = 480 and mc = 10. As
discussed in Section 4.4, the evaluated D-CNN has the
same structure of the SnCAE decoder and with similar
optimal hyper-parameters.

Table 1 summarizes the shape estimation accuracy re-
sults of all methods for the Nitinol and Electric wires. In
addition, Table 2 shows the mean computation time of
an individual wire shape estimation for both wire types.
Computation time was evaluated on an Intel-Core i7-
8700 Ubuntu machine with 16GB of RAM. First, the
analytical model not only takes a long period of time
to process data, it provides inferior results in terms of
accuracy. For the model to provide better accuracy as
demonstrated in [20], much more data is required for
training calibration model ψ with the cost of days more
of computation. Also, the average computation time for
one shape estimation is rather large, fits to the time re-
ported in [21] and is limited in real-time motion plan-
ning. On the other hand, with the same amount of
data, a NN can provide a much lower error as the re-
sults indicate. Furthermore, SnCAE is shown to provide
lower errors in average compared to the FC-NN with a
much smaller standard deviation. D-CNN also provides
a fairly good accuracy while only providing map Γwith-
out the inverse solution. Computation times of shape es-
timation for all data-based models are much faster by at
least an order of magnitude compared to the analytical
model. Note also that with a GPU, the computation time
can be significantly reduced. Thus, data-based models
are far more suitable for real-time applications.

Figures 9 and 10 show the shape estimation error
of the Nitinol and Electrical wires, respectively, for
SnCAE and FC-NN with regards to the number of sam-
ples in D. The error for each number of samples was
cross validated over 20 sequential data batches taken
randomly from the entire training set. While the im-
provement of SnCAE over FC-NN is marginal for Niti-
nol, the improvement is much larger for the electrical
wire. Overall, the results show that SnCAE outperforms
FC-NN while enabling low errors for a relatively small
amount of data. The electrical wire is softer than the
Nitinol and, therefore, the magnitude of the F/T sig-
nals are smaller and more affected by noise making it
harder to learn. Nevertheless, the mean error of SnCAE
is rather small. In addition, one can settle for half of the
data and acquire almost the same accuracy. In a colli-
sion checker and motion planning setting, a safety dis-
tance would be taken from the wire that is larger than
such accuracy. Figure 11 illustrates six Nitinol wire
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(a) (b) (c)

(d) (e) (f)

Figure 11: Examples of six Nitinol wire shape estimations. Black markers are the measured ground truth while the blue curve is the shape
estimation. The estimations have mean errors of (a) 11.75mm, (b) 9.83mm, (c) 6.54mm, (d) 12.61mm, (e) 8.30mm and (f) 13.32mm.

Figure 12: Shape estimation of a standard electrical wire using only a Force/Torque sensor on one gripper. The wire configuration on the right is
approximated and visualized in simulation (red markers), and compared to markers (white markers) tracked with a motion capture system.
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Figure 13: The wire is manipulated along a planned path (yellow
curves) in AFT from (top) start to (bottom) goal. The shape of the
wire is estimated in real-time (red curve) using the decoder of the
SnCAE and motion of the gripper is determined according to model
Λ.

shape estimation. In addition, Figures 1 and 12 show
examples of shape estimation with SnCAE in real-time
for the Nitinol and electrical wires, respectively.

Table 3 presents the F/T errors of the inverse prob-
lem solved with the Encoder of the SnCAE. The en-
coder is evaluated over the test data mapping measured
wire shapes to F/T states. For reference, maximal abso-
lute force and torque measured with the Nitinol wire are
6.27 N and 1.06 Nm, respectively, and for the electrical
wire, 3.10 N and 0.3 Nm. The results, therefore, show
good F/T estimation allowing mapping desired shapes
to F/T states for motion planning, as discussed in the
next section.

5.2. Path planning

We conduct an experiment in which the robot must
manipulate the Nitinol wire to some desired shape.
Map Λ is implemented by training a standard fully-
connected NN as discussed in Section 4.5. Further-
more, goal shapes Pg are randomly sampled by man-
ually placing the cable without the robot along desired
shapes and recording using the motion capture system.
A goal state is computed with the encoder according to
ag = Γ

−1(Pg). An RRT∗ is then implemented to plan

in AFT while using Γ for collision checking and Λ for
moving the robot along the path.

We analyze roll-outs along ten planned paths to var-
ious goals. At each trial, we plan motion from the cur-
rent shape to a chosen goal shape. Once planned, the
path is rolled-out in open-loop by exerting the com-
puted sequence of gripper poses. Table 4 summarizes
the results for roll-out accuracy both for tracking the
path and reaching the desired goal. Note that a shape
tracking error refers to the RMSE of the markers rel-
ative to the planned shapes of the corresponding steps
along the path. Then, the results show high accuracy
tracking and goal reaching. A path was planned with the
accuracy of the SnCAE decoder. However, roll-outs are
dependent on the accuracy of the corresponding gripper
pose b acquired by learned model Λ. Hence, the accu-
rate model Λ enabled the good tracking of paths with-
out regards to the accuracy of the decoder that planned
them. Figure 13 shows snapshots of one roll-out while
the corresponding path tracking in AFT is illustrated in
Figure 14. Another roll-out example is seen in Figure
15. Tracking is seen to be accurate both in shapes and
in AFT .

Figure 16 shows a demonstration of planning a path
in the presence of a cylindrical obstacle. The location
of the obstacle was detected with markers and a motion
capture system. Motion to the same goal was conducted
five times while starting from different states. All roll-
outs were successful and the wire did not collide.

6. Conclusion

We have explored the learning of wire shapes based
on non-visual perception. While analytical models are
commonly used, we have proposed training a NN model
based on F/T measurements exerted on a robot arm by
a wire. An autoencoder based model, termed SnCAE,
was presented where convolutional layers were used to
maintain the spatial shape of the wire and the latent
space was forced to resemble the space of F/T measure-
ments. Then, the trained encoder and decoder are used
for mapping wire shape to F/T state and vice versa, re-
spectively. In general, the evaluated data-based mod-
els (decoder of SnCAE and FC-NN) outperformed the
analytical approach proposed in prior work for shape
estimation. While the SnCAE gained moderate accu-
racy improvement over the FC-NN for the two cables, it
has provided an added value with the encoder. The en-
coder was shown to be able to solve the inverse problem
and identify goal F/T states from given shapes. Fur-
thermore, the results show that sufficient accuracy can
be achieved with a relatively small amount of samples.

12



Figure 14: Roll-out of a planned path in AFT corresponding to the motion in Figure 13.

Along with a Nitinol wire, we have demonstrated, for
the first time, the ability to predict the shape of an elec-
trical wire with an accuracy that is feasible for real ap-
plications. With another NN model trained with the
same collected data, we can map F/T states to desired
gripper poses. Hence, a motion planner was imple-
mented to plan and roll-out collision-free paths. A set of
experiments was shown to validate pose estimation and
planning accuracy. Overall, we have shown the ability
to learn an accurate mapping from measured F/T load to
the shape of the wire and vice versa.

Our proposed method indeed provides a model for
the trained wire. The model cannot be applied, for in-
stance, to a wire of different length. Therefore, future
work may involve the generalization of a NN model to
wires of various lengths, materials and stiffnesses. In
addition, some data augmentation can be performed to
reduce the number of real samples required. Alterna-
tively, data collected from a physics engine along with
domain randomization may provide sufficient general-
ization to various wires. Advanced models such as the
U-Net[50] can also be integrated in order to augment
performance.

Declaration of competing interest

The authors declare that they have no known com-
peting financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

References

[1] R. Levien, The elastica: a mathematical history, Tech. rep.,
EECS Department, University of California, Berkeley (Aug
2008).

[2] X. Jiang, K.-M. Koo, K. Kikuchi, A. Konno, M. Uchiyama,
Robotized assembly of a wire harness in a car produc-
tion line, Advanced Robotics 25 (3-4) (2011) 473–489.
doi:10.1163/016918610X551782.
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matic assembly path planning for wiring harness installations,
Journal of Manufacturing Systems 32 (3) (2013) 417 – 422.
doi:10.1016/j.jmsy.2013.04.006.

[30] Y. Asano, H. Wakamatsu, E. Morinaga, E. Arai, S. Hirai,
Deformation path planning for manipulation of flexible cir-
cuit boards, in: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2010, pp. 5386–5391.
doi:10.1109/IROS.2010.5651132.

[31] H. Wakamatsu, K. Takahashi, S. Hirai, Static modeling of linear
object deformation based on differential geometry, in: Interna-
tional Journal of Robotics Research, Vol. 23, 2004, pp. 293–311.
doi:10.1177/0278364904041882.

[32] R. Gayle, P. Segars, M. Lin, D. Manocha, Path planning for de-
formable robots in complex environments, Vol. 1, MIT Press
Journals, 2005, pp. 225–232.

[33] I. Kabul, R. Gayle, M. C. Lin, Cable route planning in com-
plex environments using constrained sampling, in: ACM Sym-
posium on Solid and Physical Modeling, NY, 2007, pp. 395–
402. doi:10.1145/1236246.1236303.

[34] T. Bretl, Z. McCarthy, Equilibrium configurations of a kirch-
hoff elastic rod under quasi-static manipulation, in: E. Frazzoli,
T. Lozano-Perez, N. Roy, D. Rus (Eds.), Algorithmic Founda-
tions of Robotics X: Proceedings of the Tenth Workshop on the
Algorithmic Foundations of Robotics, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013, pp. 71–87. doi:10.1007/978-3-
642-36279-8 5.

[35] S. M. LaValle, Planning Algorithms, Cambridge University
Press, 2006.

[36] O. Roussel, A. Borum, M. Taı̈x, T. Bretl, Manipulation plan-
ning with contacts for an extensible elastic rod by sampling on
the submanifold of static equilibrium configurations, in: IEEE
International Conference on Robotics and Automation (ICRA),
2015, pp. 3116–3121. doi:10.1109/ICRA.2015.7139627.

[37] O. Roussel, M. Taı̈x, T. Bretl, Efficient motion planning
for quasi-static elastic rods using geometry neighborhood ap-
proximation, in: IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, 2014, pp. 1024–1029.
doi:10.1109/AIM.2014.6878215.

[38] A. Borum, T. Bretl, The free configuration space of a kirchhoff
elastic rod is path-connected, in: IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 2958–2964.
doi:10.1109/ICRA.2015.7139604.

[39] S. Wu, J. Zhang, D. Wu, Equilibrium manipulation planning for
a soft elastic rod considering an external distributed force and
intrinsic curvature, IEEE Robotics and Automation Letters 7 (4)
(2022) 11442–11449. doi:10.1109/LRA.2022.3199823.

[40] M. Yan, Y. Zhu, N. Jin, J. Bohg, Self-supervised learning
of state estimation for manipulating deformable linear objects,
IEEE Robotics and Automation Letters 5 (2) (2020) 2372–2379.
doi:10.1109/LRA.2020.2969931.

[41] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna,
M. Laskey, K. Stone, J. Gonzalez, K. Goldberg, Learning rope
manipulation policies using dense object descriptors trained
on synthetic depth data, in: IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 9411–9418.
doi:10.1109/ICRA40945.2020.9197121.

[42] P. Mitrano, D. McConachie, D. Berenson, Learning where
to trust unreliable models in an unstructured world for de-
formable object manipulation, Science Robotics 6 (54) (2021).
doi:10.1126/scirobotics.abd8170.

[43] Y. Wang, D. Mcconachie, D. Berenson, Tracking partially-
occluded deformable objects while enforcing geomet-
ric constraints, in: IEEE International Conference on

15



Robotics and Automation (ICRA), 2021, pp. 14199–14205.
doi:10.1109/ICRA48506.2021.9561012.

[44] S. Antman, Nonlinear Problems of Elasticity, Springer, 2005.
doi:10.1007/0-387-27649-1.

[45] J. Kennedy, R. Eberhart, Particle swarm optimization, in: In-
ternational Conference on Neural Networks, Vol. 4, 1995, pp.
1942–1948. doi:10.1109/ICNN.1995.488968.

[46] M. Grossman, Parametric curve fitting, The Computer Journal
14 (2) (1971) 169–172.

[47] J. Zhai, S. Zhang, J. Chen, Q. He, Autoencoder and its
various variants, in: IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC), 2018, pp. 415–419.
doi:10.1109/SMC.2018.00080.

[48] Y. Zhou, C. Barnes, J. Lu, J. Yang, H. Li, On the continuity of
rotation representations in neural networks, in: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 5738–5746. doi:10.1109/CVPR.2019.00589.

[49] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal
motion planning, International Journal of Robotics Research
30 (7) (2011) 846–894. doi:10.1177/0278364911406761.

[50] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional net-
works for biomedical image segmentation, in: International
Conference on Medical image computing and computer-assisted
intervention, Springer, 2015, pp. 234–241. doi:10.1007/978-3-
319-24574-4 28.

16


