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Abstract Acquiring a qualitative force-closure grasp
requires the determination of feasible contact points on
the object based on a defined criterion. The determina-
tion must be fast in order to implement feasible synthe-
sis algorithms. Moreover, grasping of sheet metal parts
has further requirements derived from its geometry and
clamping tools. This paper presents a grasp quality
analysis for the application of sheet metal parts. More-
over, a novel grasp quality measure approach is pro-
posed based on standard deviation computation of the
contact’s coordinates. The proposed measure is frame
invariant, simple to implement, and has low computa-
tional complexity. A comparative analysis over other
measures is presented. Further, a stress analysis was
performed to show that the proposed criterion yields
low stress on the sheet metal part compared to other
criteria. Simulations show advantage to grasp synthesis
with the proposed quality measure.

Keywords Grasp quality measure - Grasp synthesis -

Sheet metal parts

1 Introduction

Grasp synthesis involves the process of determining the
position of the contact points on the grasped object, the
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forces to be applied and the configuration of the end-
effector in order to perform the grasp. The problem of
determining the best contact points for the fingers to
grasp a given object has been widely approached by dif-
ferent methods. The common method in off-line plan-
ning is acquiring a mesh representation of the object
using an existing CAD model [26,27], and searching for
a feasible grasp with a known number of fingers [18,
31]. This method yields many possible grasp combina-
tions. Hence, a grasp quality measure is defined and the
best grasp chosen is the one that maximizes the quality
measure.

There are many grasp quality measures used in var-
ious grasp synthesis algorithms. Ferrari and Canny [6]
and Li and Sastry [11] introduced a quality measure
based on the external wrench to be resisted; the for-
mer introduced a general measure based on the largest
wrench magnitude that the grasp can resist, and the lat-
ter used a task-oriented quality measure defined by the
specific wrenches applied to the object during execu-
tion of the task. The measure introduced by Ferrari and
Canny is the most common one, measuring the radius
of the largest ball that could be fully contained in the
convex-hull of the grasp wrenches (this method will be
further presented in detail). However, this method has a
computational complexity of O(hlogh) [25], where h is
the number of wrenches generated by the contacts (dis-
cretizing the friction cones at the contact points, as will
be discussed in Section 2, increases h significantly). This
complexity results in high computational runtime, and
makes it hard to acquire efficient grasp synthesis. Lin et
al. [12] presented a frame-invariant quality measure for
compliant grasps and fixtures, and presented an appli-
cation for the planning of grasps and fixtures. Mirtich
and Canny [15] proposed a computational method for
two- and three-finger optimal grasps using an optimal-



ity criterion based on decoupled wrenches, i.e., taking
into account pure forces or pure moments. Li and Sas-
try also introduced a quality that measures how far the
grasp configuration is from reaching singularity.

The quality measures mentioned above are based
on the position of the fingers and the force direction
they apply; other quality measures are based on ge-
ometric criteria where the distribution of the fingers
on the objects is maximized. A common quality mea-
sure criterion for 3-finger planar and spatial objects is
based on the area of the triangle formed by the three
contact points [5,15]; it assesses the distribution of the
contact points. For grasping planar objects with more
than 3 fingers, the area of the convex hull of the con-
tact points is computed. In the case of grasping spatial
objects with more than 3 fingers the computation of
this grasp quality gets more complex. This problem in-
volves high computational complexity and occasionally
multiple possible solutions. This measure will be dis-
cussed broadly in Section 3. Kim et al. [9] presented
the stability grasp index, which defines a polygon cre-
ated of the contact points and measures the deviation
of the polygons angles from a regular polygon; this im-
plies the distribution of the polygon on the object.

In off-line grasp synthesis algorithms [29], all or ar-
bitrary grasps are sampled over a given object and
checked for force closure and a quality measure thresh-
old. Such search suffers from high computation time,
mainly when increasing the desired contact points. For
example, in whole arm grasping [30], the wrapping of
the arm or fingers on the object is discretized to numer-
ous contact points [34]. In such case, fast computation
of a quality measure for each sampled grasp is crucial.

This paper presents a novel quality measure based
on the standard deviation of the contact points. The
measure termed Standard Deviation based Quality Mea-
sure (SDQM) is a coordinate frame invariant criterion
that evaluates the distribution of the contact points on
the grasped object. The proposed criterion is shown to
be simple to implement with extremely low computa-
tional runtime compared to other criteria. Moreover,
we show that the method is insensitive to the increase
of fingers in terms of performance (i.e., runtime) unlike
other methods.

We introduce an application of the SDQM to grasp-
ing of Sheet Metal Parts (SMPs). SMPs are curved thin
and flat objects formed by bending, cutting, and stamp-
ing sheet metal plates. The grasp and fixture of an SMP
is usually done with clamps or suction cups. Moreover,
its geometry requires well distributed fixture points on
the surface of the SMP to prevent distortion and dam-
age. There is much work in the field of SMP fixturing
[1,3,4,7,21]. We propose the use of the SDQM criterion

for grasp synthesis of SMPs as a simple to implement
method with low computational cost over other crite-
ria. The SDQM provides a measure for the distribution
of the clamps on the sheet, which is essential for SMP
grasping. Further we show a comparative stress analysis
to examine the von Mises stress developed with refer-
ence to the grasp criteria. To the authors’ knowledge,
no previous stress analysis was performed with regard
to grasp quality measures. It should be noted that we
deal with the grasping of known objects, that is, a de-
tailed polygonal mesh of the object exists.

This paper is organized as follows. Section 2 presents
some grasping background to be used by the quality
measures to be presented. In Section 3 we discuss sev-
eral common quality measures used in this paper for
comparison and analysis. Section 4 discusses in detail
the novel SDQM criterion and in Section 4.2 planar test
cases are presented. In Section 5 we apply the SDQM
to a special case of grasping SMPs and present anal-
ysis and performance results. Conclusions are given in
Section 6.

2 Preliminaries

In this section we review some relevant grasping funda-
mentals. We present the grasp model we use and discuss
the notions of force-closure.

2.1 Grasping Model

Forces and torques can be represented as wrench vectors
in the wrench space. A wrench is a d-dimensional vector
where d = 3 for a 2D grasp and d = 6 in the 3D case, re-
spectively. The wrench is denoted as w = (£7 u?)" €
R? where f is the force vector and u is the torque vec-
tor. Furthermore, a wrench applied at the contact point,
pi, can be described as w; = (f7 (p; x fi)T)T, where
pi is represented in the object coordinate frame. Fric-
tion exists at the contacts between the fingertips of the
end-effector and the object’s surface. Friction can be
represented by the simple Coulomb friction model. In
this model, forces exerted at the contact point must lie
within a cone centered about the surface normal. This
notion is known as the Friction Cone (FC) and is given

as
fi1

FC = fiz | : ‘\/fi722 + 5% < pfig, VEi1 >0
fi3

(1)

where f; ; is the normal component, f;» and f; 3 are
the tangential components at the contact point, and p

)



is the coefficient of friction. The FC is non-linear and
therefore can be approximated with an s-sided convex
polytope and every force f; exerted within the FC can
be represented by a linear combination of the unit vec-
tors fy € FC (primitive forces) constructing the lin-
earized friction cone (LFC),

LFC = {fl : fi = Zaiki}ikv Qi Z 0} (2)

k=1

where LE'C' C FC and a; are nonnegative coefficients
[13]. The * sign denotes a unit vector. The associated
wrenches can be expressed by the primitive forces as

Wi= > apWic= Y i ( fhc ) ®3)
k=1

P pi x fix

where wy are the primitive wrenches associated with
the primitive forces.

The geometry of an n-finger grasp can be repre-
sented by the locations P = {p1,...,pn} of all contact
points and the normals N' = {ny, ..., n, }. Equivalently,
we can represent the grasp using the matching wrenches
applied at the contact points represented in the object
coordinate frame W = {w1, ..., wy }. If we consider the
friction cones, the wrench set can be expressed by the
primitive wrenches

W = {W117W127~~'Wlsv~'~7Wnluwn27~~~7wns}' (4)

The effect of the contact forces fy, ..., f,, at contact
points p1, ..., Pn On the object are given by the grasp
map G such that the net wrench wyg is given by

f;
fa

In the case of point contact with friction, the grasp map
G is given by [17]

G=|[Gy - G,] eR" (6)

where
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Pilti R;

R; € SO(3) is a rotation matrix from contact point i’s
reference frame to the objects reference frame, and p; is

the skew-symmetric matrix representation of p; given

by

0 —-pi, by
pi=|p, 0 —-pi| - (8)
-pi, Pi, O

Based on the model of the grasp, in the next subsection
we present the notion of force closure.

2.2 Force Closure

A grasp is said to be force-closure if it is possible to
apply wrenches at the contacts such that any exter-
nal forces and torques applied to the object can be
counter-balanced by the contact forces. A system of
wrenches can achieve force-closure when they positively
span the entire wrench space. Hence, any external load
can be balanced by a non-negative combination of the
wrenches. The Convex-Hull (CH) is mostly used to an-
alyze the grasp and to determine whether it is force-
closure[24]. The convex hull of the system of contact
wrenches is denoted as the Grasp Wrench Set (GWS).
After the GWS is defined, we use it to check if the
CH positively spans the entire wrench space, meaning
whether the grasp is force-closure. We check positive
span to ensure positive grip (non-sticky fingers).

Theorem 1 [16,17,24] A necessary and sufficient con-
dition for a set of wrenches VW to achieve force-closure
is that the origin of R lies in the interior of the convex
hull of the contact primitive wrenches. Meaning,

O € interior(CH(W)) . (9)

The above Theorem defines whether a grasp is force
closure. A practical method for implementing this is
presented in [27]. Based on the notions presented in
this section, in the next section we review several known
grasp quality measures.

3 Grasp Quality Measures

It is common to classify grasp quality measures into two
categories [5]; those that take solely the geometry of
the grasp disregarding the end-effectors configurations
and the ones that evaluate the end-effectors ability to
perform the grasp. In this paper we will focus only on
the former category. In particular, we will observe and
compare our proposed quality measure to the following
common measures [28]:



1. Area of grasp polygon (AGP). The AGP quality

measure was first related to 3-finger grasps. In [15]
it was shown that the larger the triangle formed
by the 3 contact points on the object is, the more
robust the grasp is. That is, with the same finger
forces the grasp can resist larger external torques.
Formally, the AGP measure for planar and spatial
3-fingers grasp is calculated as

Qacp = Area(Triangle(p1, P2, P3)) - (10)

For planar grasps with more than 3 fingers, the
grasp is evaluated by the area of the polygon formed
by the n contact points. However, for non-convex
polygons, there are several area solutions and there-
fore we usually calculate the area of the convex-hull
(CH) formed by the contact points. That is,

Qacp = Area(CH(p1,..,Pn)) - (11)

For spatial grasps with more than 3 fingers the prob-
lem becomes more complex. Supuk et al. [33] pro-
posed a method in which 3 fingers are chosen for
defining a contact plane and the remaining contacts
are projected on the plane. The AGP quality mea-
sure for such grasp is the area of the CH of the
projected contacts on the plane given by

QAGP = ATGG(CH(plup27p37p£17"'7p;1)) (12)

where p{ is the projected point of contact p; on the
plane formed by p1, p2, ps- This extension has sev-
eral problems. First, which three contacts should be
chosen to form the contact plane? Choosing differ-
ent contacts will result in different quality values.
This problem has no good solution so far and prob-
ably should be done based on the geometry of the
end-effector. In our implementation we would ran-
domly choose the three contacts. Another problem
involves the complexity of the computation. Com-
putation of the AGP for a 3-finger grasp is fast and
efficient; however, as we increase the number of fin-
gers, the computational cost for the projections and
the convex-hull increases.

. Minimum singular value of the grasp matrix
(MSYV). A grasp is said to be singular if at least one
singular value of the grasp matrix G goes to zero.
In such case, the grasp loses its ability to counter-
balance external wrenches in at least one direction
[11]. Therefore, the MSV quality measure is calcu-
lated to be the smallest singular value of the grasp
matrix. Mathematically,

Qumsv = min(\(G)) (13)

where A\(G) is the singular values vector calculated
by the square roots of the eigenvalues of GG .

3. Largest ball in wrench space (LBW). In this
method, the grasp quality is equivalent to the radius
of the largest ball centered at the origin of the GWS
and fully contained in the CH(W) [6,10]. In other
words, the grasp quality measure is defined as the
distance from the origin of the GWS to the closest
facet of the CH(W). Formally, we can say that the
quality measure @ is defined as

QLew = wealm ) [[wl (14)

where CH (W) is the boundary of CH(W). The
quality measure @ pw is the radius of the ball and
denotes the weakest net wrench of the grasp. This
means that the largest contact forces would have to
be applied to counter balance an external wrench
applied along the weakest direction. The weakest
direction is defined by the vector from the origin to
the point where the Qppw-sized ball is tangent to
the boundary of CH(W).
This method is the most popular and researched
grasp quality measure. However, it has high compu-
tational cost. Notice that as we increase the num-
ber s of unit vectors discretizing the LFC, the size
of W increases and the computational runtime will
be higher. Moreover, this measure depends on the
choice of the reference system [12] and usually the
center of mass of the object is chosen (if possible)
as the origin.

4. Volume of grasp wrench space (VGW). An
alternative to the LBW criterion was proposed to
eliminate its reference frame dependence [14]. In this
quality measure the volume of the wrench space is
computed, that is,

Qvew = Volume(CH(W)) . (15)

This measure is indeed invariant of the reference
frame but the indication of the weakest direction for
counter-balancing external wrenches was removed.
Moreover, similar to the LBW, the runtime is sig-
nificantly affected by the discretization size of the
LFC.

4 Standard Deviation based Quality Measure

One can think of grasping a long beam from one edge.
Although the grasp may be force closure, large forces
would have to be applied to counter-balance external
torques such as one caused by gravity. Hence, as dis-
cussed in Section 3, many grasp quality criteria are
based on the distribution of the contact points on the
surface of the grasped object. A good distribution would
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result in balanced and relatively low loads on the fin-
gers. We present a novel distribution based quality mea-
sure termed Standard Deviation based Quality Measure
(SDQM), and compare it to other known measures.

4.1 Proposed quality measure

The main concept of defining the SDQM is by evaluat-
ing the distribution of the contact points on the grasped
object. We use a Standard Deviation (SD) measure to
quantify the distribution.

Given a set of n contact points P = {p1,...,Pn}
where px = (2, Yk, 21), the SD vector is defined to be

VE S (o — )2
= [ Visiiwe -9 (16)
VA S (o — 2)2

where p = (7 i )T is the mean vector of the respected
coordinates of P. The SD vector 7 contributes a mea-
sure of the distribution of the contacts on the object.
However, the values of 7 strongly depend on the refer-
ence frame of the points in P.

One of the desired properties of the new quality
measure is to have it invariant of reference frames. How-
ever, it could easily be shown that the SD vector of
(16) is non-invariant to rotation. Rotation of the refer-
ence frame changes the components in 7 between some
maximal and minimal values. Thus, we are interested in
evaluating 7 to be the extremum of the SD. A simple
and effective way to do so is using Principal Compo-
nent Analysis (PCA) [8]. The PCA method is used to
compute the most meaningful basis of a data set. That
is, it will output the basis coordinate frame such that
the z-axis has the highest SD and the other two axes
in turn will have the highest SD possible under the or-
thogonality constraint. Therefore, the rotation matrix

B
I
S

Rsp = PCA(P) (17)

is the output of the PCA used to rotate the vectors in
‘P to the meaningful basis in terms of the SD. Note that
the Singular Value Decomposition (SVD) [32] could also
be used. However, the runtime of the PCA is better
than that of the SVD.

Given the rotated vector set P’ = {pj, ..., ph} such
that p,, = Rsp - px = (2}, v 21)%, k = 1,...,n, we
define the PCA-SD vector to be (similar to (16))

VAT () - )2
= | VAT -9 (18)
NS SNEET

\]
[
N\L @\L H\L

where p’ = (z' i 2’)T is the mean vector of the respec-
tive coordinates of P’. We now want to show that the
new PCA-SD vector is invariant to rotation. First, the
next lemma shows that two sets of points, one rotated
relative to the other, have equal PCA-SD vectors.

Lemma 1 Given two sets Py = {a1,...,an} and Py =
{b1,...,bn}, where there exists a rotation matriz R €
SO(3) such that by = R-ay for all k = 1,....,n. The
rotation matrices R, and RB, are computed by the
PC A function such that aj, = R% pay and b}, = REby.
By that, the respected vectors are equal; that is, aj = by
forallk=1,...n.

The proof of Lemma 1 is relegated to the Appendix.
The next Theorem shows that the PCA-SD vector is
invariant to reference frame rotation and translation.

Theorem 2 Given two sets Py = {ai,...,an} and Py =
{b1,...,bn}, where there exist a rotation matrix R €
SO(3) and a translation vector d € R? such that by =
R-ax+d forallk =1,...,n. Let 7 and 7, be the PCA-
SD wvectors of P1 and Ps, respectively. Therefore, both
PCA-SD vectors are invariant to any arbitrary rotation
R and translation d such that 7, = 7.

The proof of Theorem 2 is relegated to the Appendix.
Therefore, based on Theorem 2, the PCA-SD is invari-
ant to reference frame representation.

The new PCA-SD vector 7/ expresses the distribu-
tion of the grasp points relative to their mean. However,
a generalization of a single number for the grasp qual-
ity measure is required. A good approach is to have a
simple mean of the SD vectors components given by

Qspom = (T; + Tg’; + T;) (19)

W =

where 7;,7,, 7, are the components of 7’. In this case,
the mean SD of the grasped points was acquired giving
a measure of the grasps’ distribution. It allows compar-
ison of grasps on the same object and between several
objects. The value itself is in unit length. However, for
a more intuitive measure and for better comparison of
grasps of the same object, we normalize the SDQM by
the characteristic lengths of the grasped object. That is,
the standard deviation based quality measure is given

by

! T !
Qspom = % <Zz + i + ;z) (20)
where b.,b, and b, are the characteristic lengths of
the object. The characteristic lengths are basically the
edges of the bounding box of the object as seen in Fig-
ure 1. They could be acquired by direct measurements
or by a designated algorithm. Given a uniform mesh of
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%,

Fig. 1 Bounding box of an arbitrary object.

the object, using PCA on the mesh points we can bring
the object to its principal axes and find the bounding
lengths in each axis, which are the characteristic lengths
bounding the object.

The SDQM computed in (20) is now normalized
to the object’s dimensions such that Qspom € [0,1].
Therefore, the new measure is a comparative tool for
grasps of an object where grasps with a value closer to
one are better distributed along the object than ones
with values closer to zero.

4.2 Example on a 2D shape

In this section we present an example of usage on a sim-
ple planar shape including a comparison of the SDQM
criterion to other quality measures. An arbitrary polyg-
onal object was selected (Figure 2a) for examination of
the proposed measure. The shape was uniformly dis-
cretized to 355 points along its boundaries. Next, 3-
finger arbitrary grasps were sampled and checked for
force closure until acquiring 15,000 force-closure grasps
[23]. For each, the SDQM value was calculated as well as
the common measures presented in Section 3 for com-
parison and analysis. The best grasps with the highest
quality measure for SDQM, LBW, MSV, VGW, and
AGP are presented in Figures 2b-2f, respectively. It
should be mentioned that contact points on the corners
were not allowed but contact points near the corners
were allowed for generality although they might be un-
feasible. In Table 1 the quality values for the grasps
in Figure 2 are presented. Notice that both SDQM and
AGP have graded the same grasp with the highest mea-
sure. This is due to the high correlation between the two
measures as seen next.

A statistical correlation analysis was conducted to
examine the correlation between the discussed criteria.
The Pearson product-moment correlation [22] values
between criteria computed on the planar object can be

/)

(a) Tested planner object. (b) SDQM.

A
A

(c) LBW. (d) MSV.

A
A

(e) VGW. (f) AGP.

Fig. 2 Highest quality grasps of an arbitrary planar object.

Quality of
grasp in Fig. 2b 2c 2d 2e 2f
QspqQum 0.780  0.583  0.594 0.754  0.780
QLBwW 0.233 0.652 0.540 0.342 0.233
Qmsv 1.217 1.550 1.625 1.115 1.217
Qvew 28.056 24.118 24.289 30.946 28.056
Qacp 609.3 318.8 311.6 575.6 609.3

Table 1 Quality measures for the grasps presented in Fig-
ure 2. The values between different quality measures are not
comparable.

seen in Table 2. Moreover, the quality distribution of
the SDQM was plotted with the other criteria as seen
in Figure 3. Both table and figure show high correla-
tion of the SDQM with the AGP and relatively high
correlation with the VGW. These criteria measure the
distribution of the contact points on the grasped object
and therefore high correlation is expected. This is also
the reason that in most computations, both the SDQM
and the AGP will output the same grasp as the best
one. That is, give the highest quality value to the same
grasp. A low correlation of the SDQM with the LBW
and the MSV is seen because these criteria measure a
different aspect of the grasp such as force directions or
singularity.

The runtime aspect of the new measure was also an-
alyzed and compared to other known criteria. In Figure
4 the average runtime for each criterion is presented for
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Fig. 3 Correlation of the SDQM to other known quality measures.

‘ SDQM AGP MSV LBW VGW
SDQM 1.00 0.86 0.55 0.36 0.78
AGP 1.00 0.38 0.30 0.71
MSV 1.00 0.21 0.53
LBW 1.00 0.40
VGW 1.00

Table 2 Pearson product-moment correlation coefficient ol
tested quality measures.

3-, 4-, and 5-finger grasps. It can be seen that the run-
time for the SDQM and the AGP is relatively low com-
pared to the other methods. This is due the low com-
putational complexity of the two methods compared to
the others. Moreover, as we increase the number of fin-
gers in a grasp, the runtime increases significantly in all
of the measures but the SDQM, which preserves a rel-
atively constant runtime of about 0.2 milliseconds. In
this case, the runtime advantage is given to the AGP.
However, in the case of spatial objects as will be pre-
sented in the next section, we will see a runtime advan-
tage to the SDQM.

I 3 fingers
I 4 fingers
3} | 5 fingers

N
N &1}

Runtime [msec]
=
@«

0.5

LBW SDQM AGP MSV VGW
Quiality criteria

Fig. 4 Average calculation runtime of the grasp quality cri-
teria with their standard deviation.

5 Grasping of Sheet Metal Parts

The grasp of an SMP is done using sheet metal clamps
(illustration in Figure 5a). Clamping of an SMP pro-
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vides two opposing and collinear forces at each contact
point. In this section we present the implications of this
property on the grasping model and the application of
the SDQM on grasp synthesis of an SMP.

g, /70
F,
Pc
P\ \FC
(a) (b)

Fig. 5 (a) A sheet metal clamp and (b) an illustration of a
single contact point while grasping a sheet metal part using
a clamp.

friction cones

Fig. 6 Grasping of a sheet metal part.

5.1 Force-Closure

As discussed in Section 2.2, a grasp is said to be force-
closure if it is possible to apply wrenches at the con-
tacts such that any external forces and torques acting
on the part can be counter-balanced. The determina-
tion of whether a grasp is force-closure is usually done
according to Theorem 1. However, it is a computation-
ally expensive method and in the next theorem we show
it is unnecessary while grasping SMPs. First we define
a clamping contact.

Definition 1 Contact point pc is called a coupled con-
tact if two opposing forces Fe,,Fe, are applied at point
Pc such that

N _ = N _ N
F. = aific, F, = —ash,

Fch = ﬂlfcv Fl = 7ﬂ2£c

C2

(21)

for some ay, s, 81, B2 > 0, where FCNI cmchTi (i=1,2)
are the normal and tangential forces, respectively, at
contact point pe, fic and te are the normal and tangen-
tial unit vectors to the surface at pc.

The next lemma shows that any external force applied
at the contact can be balanced by the coupled contact
forces.

Lemma 2 Given a coupled contact pe, there exists a
closure force of the clamp that will counter-balance any
external force applied at the point of the coupled contact.

Proof Let F., and F, (Figure 5b) be the contact forces

exerted by the two jaws of the clamp such that
Fo,=Fg +FL, i=1.2. (22)

To avoid slippage, the friction cone constraint (1) must
be satisfied, that is,

el < plFe

Li=1,2. (23)

Assume that an external force F, is applied at contact
point pe such that Fe = FYY + FT | where FY and FT
are the normal and tangential forces, respectively, at
the contact. To achieve equilibrium, the contact forces
must satisfy

N N N _
F%+F%+FSF—O (24)
F; +F; +F;, =0
By assuming FCN2 = —aFch and F:':[; = 5F2‘1 for a, 8 >
0, and using (23) and (24) on the definition of Fe we
can obtain

IFell < v/(a = 1)2 + p2(1 + )2 [[FS || (25)

Hence, there exists a clamp closure force FCN1 that would
counter-balance any external force Fo. If there exist
contact forces within the friction cones which could
counter-balance the external force, these are the forces
that would be exerted to maintain static equilibrium
[19,20]. O

The importance of Lemma 2 is by understanding
that the forces forming a coupled contact can counter-
balance any external force applied at the point of the
coupled contact, meaning that they span the force space
R3. Using this notion, the following theorem is based on
the SMP grasp method where in clamping, each contact
point is a coupled contact.

Theorem 3 Forn > 3 frictional coupled contact points
P={p1,...Pn|l Pi #Pj Vi #j, i,j =1,..,n} on the
surface of the SMP, if there are at least 3 non-collinear
contact points pi, Pj, Px € P, the frictional forces at P
positively span RS, and the grasp is force-closure.
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Proof According to Lemma 2, one coupled contact pj
spans the force space R? and can counter balance any
external force. With an additional coupled contact pj,
external torques can be counter-balanced in any direc-
tion except about the axis formed by pipj; that is, the
four frictional forces span only R®. Therefore, adding
an additional coupled contact at point px = {px|pk #
pi +7(pi — Pj), Y7} enables applying torque about the
pip; axis. Hence, the three contact points pj, pj, Pk
with six frictional forces positively span RS. The three
coupled contact points pj, pj, Pk positively span the
wrench space and therefore additional contact points
would not affect the proved force-closure property. O

Theorem 3 provides the notion that a grasp of an SMP
with n > 3 clamps (Figure 6), where at least three
clamps are non-collinear, is always force-closure. There-
fore, there is no need for force closure analysis using
the convex-hull method. Moreover, there is no need for
modeling and linearizing the friction cones, which con-
sume large computation resources. This notion reduces
the runtime of grasp search algorithms drastically. How-
ever, there is a need for a criterion to be used to filter
out undesired grasps. Therefore, we propose the SDQM
criterion for quantifying feasible grasps of the SMP.
Maximizing the distribution of the contact points on
the SMP is crucial for a feasible grasp and therefore the
SDQM is a suitable criterion for this application. In the
next subsection we present results for finding the best
grasp of an arbitrary SMP under different grasp quality
criteria.

5.2 Results and Analysis

For analysis of the SDQM criterion on SMP grasping,
we chose an arbitrary SMP CAD model as seen in Fig-
ure 7a. Using Comsol Multiphysics the CAD is dis-
cretized to 509 mesh triangles as seen in Figure 7b. Due
to the fact that an object with such mesh size has about
21.8 x 10% potential 3-clamp grasps, for the analysis we
randomly sampled only 15,000 of them and calculated
the quality measures for each to select the best ones
according to various criteria.

Figure 8 presents the best grasps according to the
different criteria. In this case, the best grasps according
to the LBW and VGW criteria are similar and seen in
Figure 8a. Similar to the 2D case, the best grasps ac-
cording to the SDQM and AGP criteria are the same
grasp (Figure 8b). This is according to the high correla-
tion between the two criteria as will be discussed next.
The best grasp according to the MSV criterion is seen
in Figure 8c. The quality values of these grasps can be
seen in Table 3. The mentioned similarity between the

(c) (d)

(e)

Fig. 7 SMP’s used for simulations: (a) simple sheet SMP,
(b) its mesh, (c) Folded elliptical SMP, (d) a bowl SMP and
(e) a long tube SMP.

criteria can also be seen.

The average runtime for calculating each criterion
relative to the number of clamps is seen in Figure 9.
It can be seen that the LBW, VGW, and MSV crite-
ria have high computation time, which continues to in-
crease as we increase the number of clamps in the grasp.
In contrast, the runtimes for the AGP and SDQM are
rather low. Moreover, the SDQM runtime is relatively
constant at about 121 micro-seconds. A clear runtime
advantage of the AGP criterion over the SDQM can be
seen in the case of 3-clamp grasps. However, for 4-clamp
grasps the advantage is to the SDQM as the AGP run-
time ascends over the SDQM and keeps increasing at a
moderate slope. The advantage of the SDQM over the
other criteria with respect to the number of clamps is
in the way it is being computed. Computing the SDQM
is done as mentioned by the PCA method, which has
two main steps; one is computing the covariance matrix
of the contact points and the second is computing the
eigenvectors and eigenvalues of the covariance matrix.
The first step has a minor runtime effect when increas-
ing the number of contacts. The second step is invariant
to the number of contacts as it will always calculate the
eigenvectors and eigenvalues of the 3 x 3 covariance ma-
trix (and a 2 x 2 matrix in the planar case). In the other
quality criteria, the number of contacts in the grasp is
much more significant, mostly in those that involve the
computation of a convex-hull.
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(a)

(b)

Fig. 8 Best grasp according to (a) the LBW and VGW criteria, (b) the SDQM and AGP criteria and (c) the MSV criterion.

Quality of
grasp in Fig. 8a 8b 8c
Qspom 0.498  0.521  0.465
QrBw 0.065 0.059  0.057
Qumsv 0.225 0.218  0.257
Qvew 0.0018 0.0015 0.0017
Qacp 0.023  0.025  0.019

Table 3 Quality measures for the grasps presented in Fig-
ure 8. The values between different quality measures are not
comparable.

Runtime [us]

6 7
Number of fingers

Fig. 9 Average calculation runtime of the grasp quality cri-
teria for SMP grasping.

The quality distribution of the SDQM in the 3-
clamp case was plotted with respect to the other criteria
distribution as seen in Figure 10. The Pearson product-
moment correlation values of the 3-clamp grasp compu-
tation shown above are presented in Table 4. The same
calculations were done on the ellipse SMP shown in
Figure 7c and the tube SMP in Figure 7e. Their corre-
lation results are shown in Tables 5 and 6, respectively.
These results show high correlation of the SDQM with
the AGP and relatively high correlation with the VGW.

As mentioned in the planar case, these criteria measure
the distribution of the contact points on the grasped
object and therefore high correlation is expected. This
is also the reason that in most cases, both the SDQM
and the AGP will output the same grasp as the best
one. A relatively high correlation of the SDQM with
the LBW and the MSV is seen, contrary to the planar
case.

| SDQM  AGP MSV  LBW VGW
SDQM | 1.00 09I 072 0.4 086
AGP 1.00  0.86 0.88  0.95
MSV 100 094  0.86
LBW 100 0.85
VGW 1.00

Table 4 Pearson product-moment correlation coefficient of
tested quality measures on the SMP in Figure 7a.

‘ SDQM AGP MSV LBW VGW
SDQM 1.00 0.92 0.60 0.67 0.86
AGP 1.00 0.78 0.82 0.95
MSV 1.00 0.95 0.88
LBW 1.00 0.90
VGW 1.00

Table 5 Pearson product-moment correlation coefficient of
tested quality measures on the ellipse SMP in Figure 7c.

‘ SDQM AGP MSV LBW VGW
SDQM 1.00 0.93 0.57 0.62 0.89
AGP 1.00 0.67 0.73 0.90
MSV 1.00 0.94 0.51
LBW 1.00 0.54
VGW 1.00

Table 6 Pearson product-moment correlation coefficient of
tested quality measures on the tube SMP in Figure 7e.
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Fig. 10 Correlation of the SDQM on SMPs to other known quality measures based 15,000 grasps sampled on the simple SMP

in Figure 7a.

5.3 Stress analysis for grasping SMPs

To examine more benefits of using the SDQM crite-
rion for grasping SMPs, we have analyzed the developed
stress on a grasped SMP. The purpose was to show that
a distribution based criterion reduces the stresses in the
grasped SMP compared to other criteria. In particular,
we examined the SDQM criterion.

For that matter, we have generated 550 random
SMPs using COMSOL Multiphysics and COMSOL Live-
Link with MATLAB. For each SMP we have computed
the best four-clamp grasps according to the five quality
measures used in the previous section. For each grasp, a
5 g load was applied to the SMP in six directions (z, —x,
Yy, =y, z, and —z), one different direction in each com-
putation. We have acquired the stress distribution at
each computation and recorded the maximal von Mises
stress on the SMP of the six directions. Thus, we ac-
quired five maximal stresses, one for each criterion, for
each of the randomly generated SMPs.

Comparison was conducted to examine which grasp
quality criterion yields the minimal stress on the SMP.
An example of the results on the SMP in Figure 7c is
presented. In Figure 11 the von Mises stress distribu-
tions are shown for each grasp. It can be seen that in
this case, the SDQM grasp has the minimal maximum
stress compared to the other grasps.

Let o;(k) be the maximal stress on SMP & grasped
by a j = {SDQM,LBW, AGP, MSV,VGW } criterion
computed grasp and let g,,;, (k) be the minimal maxi-
mum stress on SMP k& such that

Ormin(k) = min o, (k) . (26)

Therefore, the relative difference Espgonr(k) of SMP k

is given by

USDQM(k) - Umin(k)
Omin (k)

and measures the relative distance of the stress com-

puted using an SDQM grasp from the minimal stress

Espqu (k) = -100% (27)



(a) Maximal von-Mises stress: 52.46[MPa]

2

(a)

(c) Maximal von-Mises stress: 58.78[MPa]

\;2_ i

!55

(c)
Fig. 11 Example of the stress distribution on an SMP with grasps computed by the (a) LBW and MSV, (b) SDQM, (c) AGP,

and (d) VGW quality criteria.

of the stresses computed with the other criteria. The
results of Egpgoa for all SMPs are presented in the
histogram of Figure 12. It can be seen that in 60% of
the SMPs, the relative difference of the SDQM stress is
below 25%. Meaning, most of the grasps computed with
the SDQM criterion yielded grasps with stress close to
the lowest stresses computed by the five quality criteria.
In fact, in 48% of the SMPs the SDQM criterion com-
puted the grasp with the lowest stress, that is, grasps
with Egpgoum (k) = 0. Figure 13 shows the average rel-
ative difference of all criteria. It can be seen that the
distribution based criteria are the ones with the lowest
average. In particular, the SQDM criterion yielded on
average the lowest stresses on the SMPs. The SDQM
does not minimize the stresses on the SMP. However,
based on these results we can say that on average, the
SDQM criterion yields grasps with the lowest stress on
the SMP compared to the other presented criteria.

(b) Maximal von-Mises stress: 38.93[MPa] 35

30

125

4120

(d) Maximal von-Mises stress: 55.3[MPa]

(d)

Number of SMP's

0 100 200 300 400 500 600 700 800 900 1000

Espam [%]

Fig. 12 Relative difference of the SDQM stress to the mini-
mum stress.
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Avg. runtime +standard deviation [msec]

SMP # of clamps SDQM AGD LBW VGW MSV
3 31.73 £1.66 | 27.74 +2.34 [ 24,338 £144 | 1,203 £71.9 | 1,537 1944
Sheet - Fig. 7a 5 32.57 4.3 | 76.9 +4.2 | 65,606 £3.914 | 2.865 £90.9 | 1.726 £91.2
7 34.19 £3.32 | 81.68 +3.32 | 103,790 £632 | 5027 £120 | 1.837 £78.3
3 31.76 2.3 | 20.02 £2.12 | 20,513 £1,240 | 1,007 £13.1 | 1,037 £89.2
Ellipse - Fig. 7c 5 32.06 £2.46 | 57.7 £3.21 | 51,543 1631 | 2470 £47.3 | 1.167 £25.2
7 32.5 £0.44 | 58.64 £4.08 | 87,709 46,150 | 4.430 £64.6 | 1.291 £22.8
3 3211 £3.6 | 22.98 £2.8 | 18,755 £201 | 1,748 £27.6 | 959 £48.28
Bowl - Fig. 7d 5 32.24 3.5 | 54.86 £4.9 | 53,450 41,641 | 4,852 £19.26 | 2,467 £22.2
7 32.84 £3.7 | 5641 £4.1 | 90,734 £361 | 8,827 £39.2 | 4,516 +18.52

Table 7 Average synthesis runtime for several SMPs by generating 300 random grasps.

I

Average E. [%)]

LBW SDQM AGP

MSV  VGW

Fig. 13 Average relative difference of the stresses for all com-
puted criteria with their standard deviation.

5.4 Grasp synthesis using SDQM

To validate the use of the SDQM criterion for grasp syn-
thesis we searched for the best grasp for several SMPs.
As mentioned, in a mesh of a few hundred points there
are myriad grasp candidates. Therefore, we would like
to determine the number of grasp candidates to be ran-
domly selected to acquire a high quality grasp. We use
the analysis performed in [2]. Note that this analysis
can be done with any quality measure, here we use the
SDQM measure to demonstrate its synthesis time. For
demonstration, we analyze a folded elliptical SMP (Fig-
ure 7c) with width of 2 m and longitude of 4 m. We
performed 300 grasp search trials and in each trial we
generated m random grasps. The grasp with the high-
est SDQM value was chosen in each trial. Further, in
each trial we increased m. Figure 14 presents the results
for these simulations for 3-finger and 5-finger grasps. In
both cases the highest quality value reaches the average
with low variance after only m = 300 random grasps.
That is, a relatively low number of random points needs
to be generated in order to acquire high quality grasps.
Experiments have shown that changing the number of
mesh triangles describing the object does not signifi-

cantly changes the results shown in Figure 14. That is,
the number of required sampled grasps does not depend
on the mesh size.

With this result, we generated a synthesis algorithm
where 300 random grasps were generated with a vary-
ing number of clamps. Each grasp was evaluated ac-
cording to different criteria and the highest qualities
were recorded. The grasp synthesis was implemented in
MATLAB on an Intel-Core i7-2620M 2.5 GHz computer
with 8 GB of RAM. This algorithm was implemented
on several SMPs and the runtime measurements can be
seen in Table 7. It is easy to see that the AGP is run-
time superior for a 3-clamp grasp. However, the SDQM
is significantly superior as we increase the number of
clamps. Both have low runtime by two to three orders
of magnitude.

0.7

Ve TN e i e A

o
)
.

i I e L Lr T LI R u

' _ﬂ_'ﬂ' P

[ u
03 o= . BT LIRS LR ‘ﬁ“‘o " M

+ kA 3 e
X3 o, . N T (N, %
B I T Rt e P SN L N W KA S S i i
RSB M

o
w

SDQM value
S
*
-

o
N

o

a1
+ 3 clamps
= 5 clamps
i
0 200 400 600 800 1000 1200 1400
Number of random grasps chosen

Fig. 14 SDQM value relative to the number of random
grasps generated.

It is possible to expand the grasp search by increas-
ing the number m of random grasps generated. How-
ever, as seen in Figure 14, increasing m will most likely
not improve the quality of the best grasp but only in-
crease the runtime. Although the synthesis runtime is
very low, one can reduce the runtime by decreasing m
to about 70. That will provide grasps with 77%-84% of
the best grasp quality, which is sufficient in most cases.
However, such reduction can decrease the runtime by



about 78% (approximately 6 milliseconds). The runtime
performance could also be improved using parallel com-
putation as the SDQM computation for each candidate
grasp is independent.

6 Conclusions

This paper has presented a novel distribution based
quality measure termed SDQM. The paper focused on
the application of the SDQM for quantifying grasps of
SMP. We have shown that the grasping of SMPs is al-
ways force closure and therefore a quantitative mea-
sure of the grasp is required. Therefore, a compari-
son of known measures and the proposed one was con-
ducted, focusing on computational runtime and devel-
oped stress distribution on the parts.

Simulations have shown high correlation to other
known measures that evaluate distribution of the con-
tact points; in particular, the AGP measure has the
highest correlation to the SDQM. Performance analysis
shows the superiority of the AGP in 3-contacts grasps
over other methods in terms of runtime. However, as
we increase the number of fingers, the runtime of the
AGP increases while the SDQM stays approximately
constant. Hence, the application of the SDQM to SMP
grasping shows that this approach has the lowest run-
time. This is significant in whole arms grasping when a
large number of contacts is computed. It is indeed pos-
sible to improve the AGP measure in future work and
decrease its runtime in more than 3 fingers cases.

It is important to mention that comparisons were
made between quality measures of different nature. Some
measures are based on the contacts distribution and
some take the generated wrenches into account. For
SMP, a wrench based measure is not required because
the grasp is always force closure and the computation is
expensive. In general, the comparison provides a good
insight of these different measures in general and in par-
ticular to SMP. The correlations, runtime and stress
distributions of the different measures can be used by
practitioners.

We have shown that grasping of SMP with clamps is
always force closure and there is no need for the convex-
hull analysis performed in the LBW criterion. However,
computing the convex-hull provides useful information
such as the magnitude of the maximum resisted wrench
in any direction. Hence, future work could use this no-
tion to compute the minimal forces required by the
clamps to counter-balance external forces.

An important contribution of the work is the stress
analysis which has shown that grasps planned using
the SDQM criterion are more likely to yield minimum
stresses on the SMP compared to other criteria. Linking

between the grasp quality measure and the stress on the
grasped part have not been done before. Therefore, this
has inspired the authors to consider initiating future
research on a minimal stress grasp quality measure.

Appendix

The appendix contains proofs of the results stated in
Section 4.

Lemma 1 Given two sets P1 = {ay,...,an} and Py =
{b1,...,bn}, where there exists a rotation matriz R €
SO(3) such that by = R-ay for all k = 1,....n. The
rotation matrices R%,, and RS, are computed by the
PC A function such that aj, = R%pay and b} = R%by.
By that, the respected vectors are equal; that is, aj, = by
forallk=1,...,n.

Proof We define the mean vector of P; to be
n

>

k=1

By definition, there exists a rotation matrix R such that

by = R-ay for all £k = 1,...,n. Therefore, the mean
vector of Py with respect to a is shown to be

_ 1 n 1 n B
b:g;bk:£;Rak:Ra.

Let A and B be matrices concatenating the vectors in
Py and Ps, respectively, such that

5:

(28)

S|

(29)

A=a; - an, (30)
and
B:[b1~--bn]:[Ra1-~-Ran}:RA. (31)

The covariance matrices of P; and P, are given by

1
M, = —AAT —aa” (32)
n
and
1 ——
M, = EBBT —bbT | (33)

respectively. Applying (29) and (31) on (33) yields

1
My = ~RAATRT — Raa’R™
n
1 (34)
=R (AAT - ééT) RT .
n

According to (32) we acquire the relation between both

covariance matrices to be

My, = RM,RT . (35)
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Next, the eigenvalues Aa;, @ = 1,2,3 of M, are the
solution of

det (Ma — Aal) =0 . (36)

Similarly, the eigenvalues Ap,, i = 1,2,3 of My, are the
solution of

det (Mb - /\bI) =0. (37)

Equivalently, from (35), the left hand side of (37) can

be written as
det (RMaR" — Apl) = det (RMaR" — \pRRT) (38)
= det(R)det (M, — \pI) det(RT) .

By definition, matrix R is an orthogonal matrix such
that det(R) = det(RT) = 1 and therefore
det (Mb - /\bI) = det (Ma - )\bI) =0. (39)

From (36) and (39) we can conclude that the eigenval-
ues of M, and My, are equal. That is,

Ao, = Ab, = \iy, Vi=1,2,3. (40)

To find the rotation matrices R%,, and R2,, we need to
compute the eigenvectors of M, and My, by solving the
following equations

(Ma — \iT)Va, = 0 (41)
and
(Myp — NiD)vp, =0 (42)

fori =1,2,3 where v,, and vy, are the respective eigen-
vectors. Using (35) we can rewrite (42)

(RMaR" — \;I)v, = (RMaRT — \;RR")vy,
= R((My — M I)RT vy, (43)
= ((Ma — NI)RTvy,, = 0

and from (41) we show that
Vo, = RTvy,,Vi=1,2,3 . (44)

From its definition, matrix R%, is formed by the eigen-
vectors as follows

RZDT = [Va1 Vaz Vaa] (45)
and from (44)

T
Ra," = R” [vp, Vb, vb,| = RTRE) (46)
or

RSp = REDR : (47)

Applying (47) to aj_ yields

aj = R%p,a, = R%,Ray = R%,by = bj . (48)
That is, we have shown that

a.=by, Vk=1,...,n. (49)

We have shown that two sets represented in two rotated
reference frames are equal after a PCA rotation. a

Theorem 2 Given two sets P1 = {ai,...,an} and Py =
{b1,...,bn}, where there exist a rotation matrizx R €
SO(3) and a translation vector d € R3 such that by, =
R-ax+d forallk =1,...,n. Let 7}, and 7, be the PCA-
SD wectors of Py and Po, respectively. Therefore, both
PCA-SD vectors are invariant to any arbitrary rotation
R and translation d such that 7} = Ty,.

Proof The mean vector of Py is given in (28) and there-
fore the mean vector of Py can be written as

n

S 1
bzﬁgbkzﬁz(RakM)

k=1 (50)

:%ZRak+%Zd:Rﬁ+d.
k=1 k=1

The SD vector for Py is given by

b —

% En:(bk —b)2. (51)
k=1

According to the definition of by = R-ayx+d and using
(50), T, with respect to 7, has the form

Tb —

%i(Rakde* (Ra+d))? = Rra . (52)
k=1

Recall aj. and by to be the PCA rotated vectors of
ax and by, respectively, such that a; = R%pax and
by = Rngk. Therefore, the PCA-SD vector of P; is

n
(3~ &)

k=1

1

~

1< _
“A\ln Z(RgDak — R%pa’)? = R§pTa
=1

and similarly, the PCA-SD vector for Ps is 7, = Rg pTb-
The PCA-SD vector for Py could be rewritten using
(52) as

, = RepRTa (54)
or according to (47) of Lemma 1 and (53) as
= RipTa=1Th . (55)

That is, the PCA-SD vector is invariant to any arbitrary
rotation R and translation. a
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