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Abstract— Underactuated adaptive hands simplify grasping
tasks but it is difficult to model their interactions with objects
during in-hand manipulation. Learned data-driven models have
been recently shown to be efficient in motion planning and
control of such hands. Still, the accuracy of the models is limited
even with the addition of more data. This becomes important for
long horizon predictions, where errors are accumulated along
the length of a path. Instead of throwing more data into learning
the transition model, this work proposes to rather invest a
portion of the training data in a critic model. The critic is
trained to estimate the error of the transition model given a
state and a sequence of future actions, along with information of
past actions. The critic is used to reformulate the cost function
of an asymptotically optimal motion planner. Given the critic,
the planner directs planned paths to less erroneous regions
in the state space. The approach is evaluated against standard
motion planning on simulated and real hands. The results show
that it outperforms an alternative where all the available data
is used for training the transition model without a critic.

I. INTRODUCTION

Dexterity and affordable hardware are desirable properties
for a robotic hand to be viable in practical applications.
Such features, however, are often conflicting since dexterity
requires many degrees of freedom and sophisticated con-
trol, which raise cost. Underactuated hands with compliant
fingers, such as the ones seen in Figure 1, are appealing
in this context due to their adaptability and simplicity [1].
They enable stable and robust grasps with open-loop control,
and can perform precise within-hand manipulation [2]-[4].
Such manipulation capabilities are required in tasks where
the robotic arm is limited in movement, such as placing
items in a loaded shelve, confined closet, or during invasive
medical procedures.

Due to uncertainty in the manufacturing process, open-
sourced hands differ in size, weight, friction and inertia [5].
For example, 3D-printed units of the same hand model often
differ in their mechanical properties due to variations in
fabrication. Consequently, precise analytical models for such
hands are often unavailable, as they are hard to derive. Thus,
and as in previous work [4], data-based modeling enables
useful predictions and can be used for motion planning and
closed-loop control. Nevertheless, the accuracy of a learned
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(a) (b)

Fig. 1. Two-fingers underactuated hands manipulating a cylinder in (a)
Gazebo environment with the illustration of the x —y workspace (in yellow)
and in (b) a real experiment.

model is limited, even with increased data. For instance,
neural networks with a fixed number of units and layers have
a limited capacity to fit functions. Their accuracy begins to
plateau after utilizing a certain amount of data for training.

Inaccurate predictions of transition models are particularly
problematic when the models are used in a Non-Observable
Markov Decision Process (NOMDP) [6], where predictions
are performed for a long horizon based solely on an initial
state and a sequence of future actions. Hence, prediction er-
rors are accumulated, yielding rollouts that fail to accurately
track the planned paths. This makes NOMDP planning a
challenge.

This work claims that it is more effective to invest more
data, if available, to generate a critic of the learned model
rather than improving the model. The critic, trained with data
independent of the model, will provide information on the
average model prediction error given a current state and a
future action, along with a history of the past actions that
led to the state. By incorporating the critic into a model-
based motion planning framework, the planner will be able
to avoid regions of erroneous predictions. This paper presents
the generation of such critic, based on a learned model,
and its incorporation to an asymptotically optimal motion
planning algorithm. The planning algorithm has as objective
to minimize the error along the path, thus, diverting the path
to regions better predicted by the model. The approach is
implemented for in-hand manipulation tasks with underactu-
ated adaptive hands, including a physics-engine simulation
as well as demonstrations on a real hand. Both the transition
model and the critic are learned using a neural network.

II. RELATED WORK

This section reviews prior work related to underactuated
adaptive hands and data-driven transition models.



A. Underactuated adaptive hands

Underactuated hands exhibit complex responses due to
joint passivity and contact between fingers and the envi-
ronment [4]. Open-sourced hands [5] are fabricated through
3D printing and therefore, make it hard to extract precise
mechanical properties (e.g, joint friction, spring stiffness
and contact models). For this reason, along with the in-
ability to control individual joint positions, accurate models
are difficult to derive. Modeling tools for underactuated
manipulation have been introduced in several efforts [7]—
[9], which examine joint configurations, torques, and energy
with a simplified frictional model [10]-[12]. A popular
modeling technique applies a hybrid parallel/serial approach
using screw theory, which further simplifies the derivation
of a model [13]. Nevertheless, these proposed techniques
have been shown to be sensitive to assumptions in external
constraints and are mostly suitable for simulations.

Few attempts were made to control underactuated hands.
A recent work provided a linear approximation of the hand
kinematics through manipulation primitives [2]. While apply-
ing these primitives, the manipulated object tends to move
in non-linear, arc-like trajectories [4], enabling solely the
use in visual servoing with substantial tuning, and not for
model-based planning. Nevertheless, the method was used to
track paths planned with an optimization-based model-free
planner [3]. The planning was performed solely on the basis
of simple point-to-point local connection. Consequently, state
uncertainty cannot be taken into account and the planner
does not reason about the probability of success. A robust
planner, however, that finds the highest probability path to
successfully manipulate an object with an underactuated
hand to a desired goal was recently proposed [14]. Using
a data-driven learned transition model proposed in [4] (and
discussed below), a belief-space planner reasons about the
distribution of propagated states derived from model stochas-
ticity and initial state uncertainty. A model-free approach
[15] applied tactile sensing with reinforcement learning to
learn in-hand manipulation motions, and was demonstrated
on an underactuated hand.

B. Data-based transition models

A transition model is a mapping from a given state and
action to the next state. Such models are used in model-
based RL [16]-[19] and motion planning [14]. They are often
obtained through non-linear regression in a high-dimensional
space. Usages of data-driven models include learning the
probability distribution of an object after a grasp [20] or
during regrasping [21], and a hybrid modeling approach
combining analytical and data-based models to improve
accuracy in feed-forward control [22]. Neural networks have
became more popular recently thanks to their simplicity,
capacity of learning, and scalability to large amounts of data.

C. Competency-aware Learning

The increased popularity of machine learning techniques
in robotics and other application areas led to the question of
creating tools that can independently assess the accuracy of

the learned predictive models [23]-[26]. In object detection
and localization, for example, popular models such as Mask
R-CNN [27] typically provide a confidence score on their
predictions. The score can be used by other component of
a system to make decisions accordingly. Bayesian methods
such as GPs [28] also provide confidence scores as probabil-
ities of their predictions. Confidence scores are widely used
in a closely related approach known as active learning [29]—
[31]. In active learning, confidence scores are used to guide
an exploration policy towards regions where the learned
model is under-performing, in order to gather more data there
and to improve it.

In the proposed approach, the critic is used during plan-
ning to penalize trajectories that go through regions where
the learned model is inaccurate. The method differs from
previous works in the way the critic is learned. In previous ef-
forts, confidence scores are given by the learned model itself.
Here, the critic is learned independently as a separate entity.
This work highlights that the confidence scores provided by
the learned transition model (GP or neural network) cannot
be always trusted since they are obtained from the same data
that was used for training the model. For example, prior
work [32] provided examples where function uncertainty
cannot be obtained by applying a softmax on the output of
a neural network, as typically done in the literature. Thus,
the proposed critic uses a separate set of data for learning to
predict the accuracy of the learned transition model.

III. PROBLEM SETUP AND NOTATION

Let x € & C R™ be an observable state vector of
a given underactuated hand and u € U be an action
taken from a set U/ of possible actions. The state space is
decomposed into a valid subsect X,,;;¢ and an invalid one.
Validity typically refers to the state being collision-free or not
dropping the object. The system is governed by the transition
f: X xU — X, such that a given state-action pair (x;, uy)
at time ¢ is mapped to the next state x;.; according to
x¢+1 = f(x¢, u;). While the actual transition f is considered
unknown, a learned model f (x¢,us) & x¢41 can be acquired
through regression of recorded data as presented before [4]
and briefly discussed in the next section.

This work considers a NOMDP problem. In this setup,
observations are not available and planning is performed
solely based on the initial state x,. Given the learned model
f, the problem is to plan a path 7y : [0,1] — X and acquire
the corresponding sequence of actions m, : [0,1] — U,
such that 7(1) € G(xg4), where G(x,) is the region of the
goal state x4. 7 : [0,1] — X is the real tracked path when
rolling-out 7, on the system from 7« (0) = 7(0) = x,. In
addition, path 7, must optimize a cost function C, such as
path duration or length.

IV. APPROACH

The proposed system has three main components: a tran-
sition model learned from data, a competency-aware (i.e.,
critic) model learned also from data, and an open-loop
NOMDP planner based on the transition and critic models.



A. Learning Transition Model

As discussed previously, a precise model of a system
xt+1 = f(x¢,uy) is not always available. An approximate
data-driven model x4, = f (x¢,uy) offers an alternative
and can be used in model-based algorithms. A training set
is acquired by applying random actions to the system, while
recording the observable states. Consequently, the resulting
data is a set of state-action trajectories \; € P, where
N = ((x},uf),...,(xi,u})). For generating the critic as
discussed in the next section, we divide the data in P =
{Hmodet, Heritic}- Trajectories in subset Hyoqer C P are
pre-processed to a set of training inputs X;, where X; =
(xF, uT)T, and corresponding output labels of the next state
X;11. Thus, defining the training set 7 = {(X;, x;+1)}Y 1,
later used to train a recurrent neural network. Each X;, is also
labeled with d; = {success, fail} indicating whether
the transition from x; with action u; resulted in a failure.
This is used to train a classifier that provides the probability
of X; to fail (object dropped or actuators overload).

B. Critic Model

Since the available model f is learned based on data, errors
are inevitable. Moreover, planning in a NOMDP fashion
imposes the accumulation of error, where the magnitude
mainly depends on the regression method, length of the path,
regions of motion in the state-space and number of action
changes. Therefore, the new objective is an independent critic
model I' that will estimate the error of the learned transition
function at a certain state with the intended actions to be
applied in the near future. One can query the critic with
regards to the future sequence of actions with some horizon.
However, since the critic is used within a sampling-based
planning framework, it is required to sample solely one
action to be applied for a number of steps. Furthermore,
it is important to estimate the error that led to the current
state, that is, we include past actions for some horizon along
the search tree and their resulting prediction error. This
reflects the fact that different sequences of actions can lead
to varying levels of accuracy of the predictive model. For
instance, certain maneuvers, or shapes of trajectories, are
more difficult to perform or predict accurately than others.
This can be due to the distribution of the training data that
may not sufficiently cover all types of trajectories, or to
uncertainties that are inherent to adaptive hands. Since we do
not know a priori which sequences of actions lead to higher
prediction errors, we include the history of past actions as
an input to the critic and train it to predict how accurate
the learned transition model would be given that history.
For comparison, we distinguish between the CRITIC and
the History-CRITIC (H-CRITIC), where only the latter has
past actions as input.

To generate the H-CRITIC model, we require rgcorded
state paths not used in training the transition model f. Thus,
the data is a set of state-action trajectories H.y;t;c C P pre-
processed according to Algorithm 1. In brief, we generate the
critic input and output sets, ) and &, respectively. To create
a data point (y,e) (i.e., y € YV and e € &), we sample a

trajectory \; from H,;4;c, a state-action pair on the trajectory
(x5, ub) ‘and the number of steps n € [my,my] to apply
action u’. Thus, the input poi_nt y of the critic is composed
of: 1) the state-action pair (x},u’), 2) the sampled number
n, and 3) the sequence A of previous nj actions that led
to x; where ny, is a pre-defined number. The output label
e is the sum of past and future Root-Mean-Square-Errors
(RMSE) between the path predicted by the learned transition
model and the ground-truth for the specific path segment.
Note that unlike H—-CRITIC, past RMSE is not included in
the CRITIC version that does not take histories into account.

Algorithm 1: generate critic_dat a(f, Heritics Th)

1 Initialize empty sets ) and &;
2 for k<1t N do

3 Randomly choose trajectory \; from Hcpizics

4 Sample n € [m;, mp];

5 Sample j € [0, |A\;| — n];

6 Xf<—{x§-,...,x§-+n};

7 Xn Xy X5 1

8 if n, < j then

9 ‘ A{ui_,, .05}

10 else

1 | A« {0,...,0,uj,...,u}_;}; // padding
12 y < (x},uj,n, A);

13 Add y to );

14 S x};

15 Initialize set Sy withs; // future actions
16 for m < 0 to n do

17 s« f(s, u )

18 Add s to Sy;

19 Initialize set Sj, with s ; // only H-CRITIC
20 for m < ny, to 1 do

21 s« f(s,ul_,);

22 Add s to Sy;

23 | Add RMSE(Xy,Sy) + RMSE(A}, Sh) to &;

24 return Y, E;

Once the training data has been acquired, the critic model
predicts an error based on local GP regression. Given a query
point y, the K nearest neighbors Vi C ) are found. Then,
GP regression is performed on Vg and its matching output
set i to acquire the predicted error €.

C. Planning with a Learned Transition Model

The objective of the planner is to compute an optimal
sequence of controls u* for a system with unknown/complex
dynamics or noise, such that 1) the cost function is opti-
mized; 2) the trajectories rolled out from these controls have
a high likelihood of reaching the goal and 3) the trajectories
remain valid by avoiding collisions or undesirable states (e.g.
object dropped). There are two main components necessary
to perform such kinodynamic motion planning - state validity
and state transition. Related work has proposed using learned
models built from collected data from the adaptive hand to
generate a classification of the valid state space [33] and



a state transition model [4]. This work accordingly utilizes
such data-driven models in the planner.

The high dimensionality of the system, coupled with the
non-trivial amount of time required to inquiry the data-driven
models (transition and validity), restricts the use of more
traditional planning approaches (e.g. A*-like or an RRT).

D. Integration with Competency-Aware Models

We extend the planners proposed in [14], [34] to utilize the
competency-aware model described above. Specifically, we
use the deterministic planner STANDARD, and incorporate
the critic error into the cost function. Let the cost of an
edge E; = (x¢,u;) from state x; with action u; be the
error estimated by the critic model (Equation 1) as de-
scribed in Section IV-B. For the CRITIC variant, the query
vt = (X¢,u;) depends only on the current state-action. For
the H-CRITIC variation, the last n; actions are included,
SOyt = (X¢, Uy, ..., Us_p, ). Then, the cost of a node at
the approximate next state X;,; = f(x;,u,) is given as
cumulative moving average (Equation 2).

C(Et) = ék; (1)
c(Ett) — c(x¢) )
+1

Although [14], [34] has a detailed description of each other
component of the algorithm, we briefly describe the planning
process here. At each iteration, the planning process samples
a state X,qndom, and finds the nearest node on the planning
tree - where “nearness” is a function of both state space
distance as well the node’s individual cost (using Equation
2). The selected node is then given a chance to propagate one
of its candidate actions - here we prioritize actions which
bring us closer to the goal by using an approximation of
action’s effect on the workspace (e.g., using a straight-line
interpolation). At this point the transition model is queried
to provide the next state, and the critic model is queried to
provide the cost associated with this new edge. A new node is
then added, and its set of candidate actions are generated by
sampling randomly from the continuous action space, and
applying a random duration to each sampled action. This
process continues until either a) the planner expands a new
node within the goal region, or b) the planner runs out of
time. If the planner reaches the goal before the time limit,
it then proceeds with a “branch-and-bound” process, which
prunes any potential new edge from the tree which exceeds
the current found solution cost. This, along with an optimistic
heuristic, ensures that the planner is asymptotically-optimal
with regards to its cost function.

An important component of [35] is the use of a heuristic
function. In [14], a straight-line Euclidean distance to the
goal was used. However in this work, such a heuristic
would not match the cost function, and therefore was not
suitable to be used. Several different heuristics were therefore
attempted, such as assuming a minimal RMSE applied at
each time step. Experimentally, many of these did not work
well. Thus, to maintain the asymptotic-optimality property,
we removed the heuristic (i.e. return 0), and to keep guidance
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Fig. 2. (a) RMSE of a neural-network model for the simulated hand with

the increase of data size. The z-axis is the percentage of data used from
the 1,631,225 data points collected through 719 episodes in the Gazebo
environment. (b) Average error with regards to the number of action changes
along a path segment taken by the critic, and for the Gazebo system.
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Fig. 3. Prediction accuracy with regards to the percentage of data (out of
978,735 data points) used to train the critic for the Gazebo system.

towards reaching the goal we introduce goal-biasing during
the state space sampling (10% of the time).

V. EVALUATION

The method is evaluated using neural-network models over
a physics-engine simulated adaptive hand, as seen in Figure
la, and the real Model-T42 adaptive hand [5], as seen in
Figure 1b. The compliance of the simulated hand in Gazebo
was modeled given prior work [9].

A sufficient representation of the state of an underactuated
hand is an observable 4-dimensional state composed of the
object’s position and the actuator loads [4]. The hand is
controlled through the change of actuator angles, where an
atomic action is, in practice, unit changes to the angles of
the actuators at each time step. That is, an action moves
actuator ¢ with an angle of \v;, where )\ is a predefined unit
angle and ~; is in the range [-1, 1]. In the experiments below,
the simulated and real hands were trained while grasping
cylinders with 19.2 mm and 35 mm diameters, respectively.

A. Learned model evaluation

The experiments used recurrent feed-forward neural-
networks to learn the transition models of both simulated
and real systems. Both neural-networks have two hidden
layers of 128 neurons each and ReLU activations along with
a dropout of 10% to control overfitting. After experimenting
with various architectures, this one yielded the most accurate
predictions for both the systems. 1,631,225 transition points
were collected in Gazebo over 719 random episodes. The
focus is on evaluating the prediction accuracy with regards to
the data size required. Figure 2a shows results for prediction
error as the percentage of training data increases, where
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Fig. 4. Comparison of the different algorithms for the task of manipulating a cylindrical object into a goal region (magenta circle) between a “horseshoe”
obstacle (shown in gray) using the underactuated hand in simulation. Each run consists of a planning phase followed by 10 rollouts of the planned path
(shown as a black curve). Successful rollouts that reach the goal are shown as blue curves, while failed (i.e. colliding) rollouts are shown as red curves.

The yellow region is the approximated workspace of the hand.
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Fig. 5. Heatmap illustrations of the critic (for the simulated hand) error
values projected on the x—y plane with regards to different action directions.

increasing the data above 25% does not improve accuracy.
This motivates the need to augment the model with a critic
that assists in avoiding erroneous regions of X'. For the
real system, 328,483 data points were collected over 364
episodes. The experiments below use neural-networks trained
over only 40% of the data as their accuracy did not increase
beyond that, leaving the rest for the critic.

B. Critic evaluation

To generate the critic, the first step is to evaluate the
amount of data required for sufficient error prediction ac-
curacy. Figure 3 shows the accuracy of the H-CRITIC
prediction with the increase of data, out of the remaining
60% not used for training (978,735 transition points). The
accuracy does not change significantly above 40% of the
data. Figure 2b shows the actual model prediction error with
regards to the number of action changes along the past and
future path segments. This data only exists when including
past actions, as in the H-CRITIC.

As seen in Figure la, the reachable subset of the x — y
workspace of an underactuated hand is banana-shaped. To
get an understanding of the critic’s representation on this
space, Figure 5 provides the data in the critic as a heat-
map. This illustrates the errors of the critic projected on the
x —y plane with regards to actions that will direct the object

towards different directions. As expected, the error is lower
in the inner region of the x — y workspace where it is easier
to manipulate. On the other hand, the errors are higher on
the margins as they are harder to reach and collect motions
of diverse actions.

C. Planning Experiments

This section first evaluates a physics-engine simulation of
the adaptive hand across a variety of planning benchmarks
for in-hand manipulation. Then, a demonstration of a peg-
in-the-hole task on the real-hand is shown.

Algorithms: STANDARD uses the planning approach
based on prior work [14], which does not integrate the pro-
posed competency-aware models and optimizes a cost func-
tion based on path length. Both CRITIC and H-CRITIC
use the planning approach described in Section IV-D, and
optimize a cost function based on the critic error. H-CRITIC
utilizes a horizon (n;, = 40) of its past actions as part of the
query to the competency model. All methods make use of
a learned state transition model and a failure classifier (both
obtained from data), as discussed in Section IV-C.

Setup: All methods were evaluated on a single Intel
Xeon E5-4650 processor with 8 GB of RAM. The planning
approaches were given the models described above and
tasked with computing a solution for reaching a goal region
within a specified time limit (1,200 seconds). Solutions that
were found within this time limit were subsequently rolled
out 10 times each, recording whether the rolled out path
reached the goal region or failed.

1) Physics-Engine Experiments: The first set of exper-
iments, shown in Fig. 4, evaluate all three methods for
a benchmark with a goal region hidden inside a set of
obstacles, in the form of a horseshoe’. The purpose of this is
to highlight the importance of minimizing RMSE, as in this
case, there is limited clearance for the planner to reach the
goal. The average success rates for STANDARD, CRITIC
and H-CRITIC are 17.5%, 42% and 61.2%, respectively.
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Snapshots of the real hand experiments to manipulate the cylinder into the red horseshoe: roll-outs of (top) successful H-CRITIC planned path,

(bottom left) standard planned path that collided and (bottom right) standard planned path that reached overload of the actuators.

TABLE I
ROLLOUTS RESULTS FOR PLANS IN THE SIMULATED SYSTEM

[ Goal I [ 2 [ 3 [ 7 [ 5 ]
STA. | H-CRITIC | STA. | H-CRITIC | STA. | H-CRITIC | STA. | H-CRITIC | STA. | H-CRITIC
path length (mm) 111 87.42 206 91.33 169 175 97.5 93.3 83 64.9
rollout suc. rate (%) 0 20 50 80 0 100 0 90 100 100
RMSE (mm) NA 2.27 3.61 2.16 NA 5.06 NA 2.57 1.45 1.21
140 . . . . .
130 ' higher success rate. Goal 5 is in the low error region with
1204 SR not much interference from the obstacles. Thus, the results
1101 : o o, ) for the trial are equivalent to the STANDARD with a slight
100 | . °© 3 accuracy advantage to the H-CRITIC.
90 o 4 : 2) Real Hand Demonstration: The real hand demonstra-
80 . ‘ tion replicates the “horseshoe’ setup, where the hand must
70+ manipulate the cylinder to the inside. Here again, paths
60 e : = = oo are planned by the STANDARD and H-CRITIC methods.
Figure 6 shows snapshots of one successful rollout of a
Fig. 7. Five different random goal regions (magenta circle) with random plan with H-CRITIC and two failed ones planned with the

obstacles (gray dots) used for the evaluation of the STANDARD and
H-CRITIC on the simulated system. Results are shown in Table I.

The results indicate that the critic provides an advantage
for the planned paths over the traditional shortest-path cost
function. Furthermore, the usage of the history actions in
H-CRITIC over CRITIC is beneficial.

The second set of experiments defines five random goals
within the workspace of the hand, with a set of random
obstacles, and evaluates the STANDARD and H-CRITIC
approaches. The objective is to evaluate the effectiveness
of the methods for planning in different portions of the
workspace. To make it more challenging, the neural-network
model was trained over only 1% of the data which, as seen
in Figure 2a, has higher average error. A corresponding critic
was generated for it with only 20% of the remaining data.

For each goal, the planning methods were executed twice,
and for each of these runs the planned path was rolled out
10 times. The setup of the goals and obstacles can be seen
in Figure 7, with detailed statistical results for each goal
shown in Table I. In the first four goals, the H-CRITIC
was superior compared to the STANDARD approach with

STANDARD. The motion is quite slow as we assume quasi-
static motion. As a result of inaccurate model predictions,
plans with the STANDARD approach tended to collide with
the obstacles or to pull the object too much toward the hand’s
base resulting in the actuators overloading. In contrast, plans
with the H-CRITIC were tracked more accurately (RMSE of
2.63 mm for the demonstrated one) due to the minimization
of critic error, and were therefore more successful overall in
reaching the goal region.

VI. CONCLUSION

This work proposes an independent critic model to aug-
ment a given transition model and to improve accuracy.
Instead of attempting to improve the transition model with
more data, which often is unsuccessful, the method uses
the surplus data to train a critic for evaluating the accuracy
of the original model. The critic uses a history of prior
actions along with the intended action from the current state
to estimate the prediction error. A sampling-based planner
integrates the critic into its cost function to direct solutions
to regions of accurate predictions. A key future direction is
the integration of the critic into belief-space planning [14],
where uncertainty can be learned with the proposed method.
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