
Time-Based RRT Algorithm for Rendezvous Planning of Two Dynamic
Systems

Avishai Sintov and Amir Shapiro

Abstract—The work presented in this paper proposes a new
method for time based motion planning of a dynamic system
to reach a dynamical goal within a specified time. The method
enables trajectory planning based on the dynamics of the system
with time constraint. Moreover, this method allows rendezvous
planning of two dynamic systems where only one is controlled.
To reach this objective, we introduce a new concept termed
Time-Based RRT (TB-RRT) which is an extended version of
the Rapidly-exploring Random Tree (RRT). The concept of the
TB-RRT is to add time parameters to the nodes in the tree such
that each node denotes a specific state in a specific time. The
algorithm was implemented in two applications to demonstrate
the approach and validate its feasibility; The first application
is a one degree of freedom bat hitting a ball and the second
application is a three degrees of freedom manipulator catching
a moving object. Simulation results show the system accurately
following the planned trajectory and the robot catching the
object in time.

I. INTRODUCTION
Many applications in robotics demand not only motion

planning of a feasible trajectory for a robot to move from
one state (configuration and velocity) to another, but demand
also that it should be completed within a specific time.
Such applications range from industrial and civil areas to
military ones. In industrial production lines, robotic arms
could regrasp parts by tossing them in the air and catching
them in a desired configuration. Flying drones could be
catched in air instead of performing landing to avoid structure
damage due to the landing shocks. Performing car passing
on road by an autonomous car should be done within a set
time range to avoid collision. All of these applications and
more demand that the trajectory will take into account another
uncontrolled dynamic system (referred in this paper as the
dynamic goal) in a specific time.
To deal with the presented problem, two main aspects are to
be considered; the first is the time-based trajectory planning
to account for the dynamic goal and the second is the tracking
problem of the uncontrolled dynamic goal to estimate its
trajectory. In this work we focus on the first aspect and
assume full knowledge of the goals trajectory, that is, accurate
measurement and prediction of the objects position and
velocity at all times.
The trajectory planning problem has been widely researched.
The most common methods for time based trajectory plan-
ning are the point to point polynomial trajectories and cubic
splines [1]. However, these methods do not take the dynamics
and constraints of the system into account. Potential fields are
also a known method for path planning [2]. However, specific
time constraints are not taken into account. Many other works
presents trajectory planning under cost minimization such as

jerk [3] or time [4]. Another method is the Rapidly-exploring
Random Tree (RRT) [5] which is a probabilistic method
for trajectory planning in a complex environment taking the
dynamics of the system into account. The RRT approach is
the base approach of this work.
Another problem dealt in this paper is rendezvous planning
of two dynamic systems where only one is controlled. Many
solutions to this problem were presented; The proportional
navigation algorithm [6], [7] is a commonly used method to
account for a moving object such as a UAV or a missile. The
algorithm is shown to be complete as it will intercept the
object in finite time, however not in a specific desired time.
Many other rendezvous algorithms for optimal trajectories
were presented [8], [9] to find the best trajectory in a dynamic
environment.
In the presented work we wish to address two main problems.
The first problem is trajectory planning to reach a goal in
a specific desired time. To solve this problem we present
the Time-Based RRT (TB-RRT) method which incorporates
the advantages of the known RRT with time constraint. The
other problem is the rendezvous planning of a controlled
dynamic system with an uncontrolled one. To solve the
second problem we use the TB-RRT and sample the goals
trajectory into the trees space.
The paper is organized as follows. Section II defines the
problem discussed in this paper. Section III reviews the RRT
algorithm. In Section IV we present our algorithm for finding
a trajectory to a dynamic goal using a time based RRT
algorithm. In Section V we present some applications for
the method with two simulations of a bat hitting a ball and
a manipulator catching a moving object. We conclude and
suggest some future work in Section VI.

II. PROBLEM FORMULATION
This section defines the motion planning problem. Given

a dynamic system with the non-linear differential constraint

ẋ(t) = f(x(t),u(t)) (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control
inputs of the system, respectively, at time t. The initial state
at t = 0 is given by x(0) = xo. A set of constraints on
the states x(t) are imposed to avoid obstacles and physical
limits of the system. Xfree ⊂ X defines the subset of states
within a metric space X , free from obstacles and system’s
kinematic and dynamic limitations. The control inputs are
bounded according to the limits of the systems actuators
|u(t)| < umax.
Another uncontrollable non-linear dynamic system is given

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3684-7/14/$31.00 ©2014 IEEE 6745

which represents a moving goal to be reached. Its system is
given by

q̇(t) = g(q(t)) (2)

where q(t) ∈ Rn is the state of the system at time t. Its initial
state is q(0) = qo. The state of the goal does not have to be in
R
n but should be transformed to it for compatibility reasons.
The objective is to reach the dynamic goal, that is, the time-
varying state q(t). The objective would be completed if at
some time tf the condition

tf = { tf ∈ [0,∞) | x(t) ∈ Xfree ∀[0, tf]
and ρ(x(tf),q(tf)) < ε } (3)

is met. Where ρ is some metric criterion to be defined later
and ε > 0 is a predefined tolerance. Therefore, the motion
planning problem is defined as follows. Given the initial state
xo, the state constraints Xfree and the control input limit
umax, compute the control input sequence u(t), t ∈ [0, tf]
to form a trajectory x(t) for the dynamic system to reach the
dynamic goal at some finite time tf ∈ [0,∞).

III. RRT BACKGROUND

The basic RRT algorithm was firstly introduced by LaValle
[5] as a stochastic approach for trajectory planning to reach a
goal state from an initial state under a differential constraint
(such as in eq. (1)). The advantage of this method is in
its simplicity of applying multiple constraints and avoiding
obstacles.
The basics of the simple RRT algorithm is by sampling
random states and extending the RRT toward them. In every
iteration k, a random state xrand ∈ X is sampled. Then,
a nearest-neighbor search finds the closest state xk in the
tree to the random point according to a defined metric ρ.
By applying an input |uk| < umax for small time Δt, an
incremental motion is performed toward xrand based on eq.
(1) to a new state

xk+1 = xk + f(xk,uk)Δt (4)

where Δt is the time interval used for discretization and xk
is the state at time t = kΔt. The differential constraint is
discretized and integrated here with a first-order approxima-
tion. For better accuracy one can use an higher order method
such as the fourth-order Runge-Kutta. The new state xk+1 is
added to the tree only if xk+1 ∈ Xfree. The goal state qg is
reached if ρ(qg,xk) < ε for a pre-defined small ε > 0. The
euclidean metric is the common one used for ρ. The iterations
could be terminated under two approaches; An upper bound
on the number of iterations will terminate the algorithm and
the best solution be taken based on some optimality criteria.
The second approach is a greedy one where the first solution
found is taken. According to LaValle, the exploration rapidly
and uniformly covers the space and converge in a finite time.
The state space and the RRT graph of a simple Pendulum
are presented in Figure 1 where a trajectory from the down
position to the upright position is shown.

−π/2−3π/2 π/2−π/6 π/6−2π/3−5π/6

Fig. 1. A RRT graph of a pendulum and a trajectory from down position
(−π/2 radians) to the upright position.

IV. DYNAMIC MOTION PLANNING

In the previous section we presented the basic RRT
approach for kinodynamic planning. We now present the
Time-Based RRT (TB-RRT) to impose a time constraint for
reaching a dynamic goal.

A. State-Time Space

We expand the notion of the state space to contain varying
time. That is, we define the State-Time Space to be a space
where a time coordinate is added to the state coordinates of
the system. Therefore, a state-time vector is constructed as

x̃ =
[
xT t

]T (5)

where x̃ ∈ Rn+1. A state-time vector indicates the config-
uration and velocity of a system at time t ∈ [0,∞). The
state-time space is now denoted as X̂ ⊂ Rn+1.
With the new state-time vector we can now modify eq. (4)
to be

x̃k+1 = x̃k +

(
f(x̃k,uk)
1

)
Δt . (6)

That is, the next node x̃k+1 in the tree is updated to its
new time by adding Δt relative to its parent node x̂k.
Moreover, we constrain the new node in the tree to be in
the allowed state-time space, i.e., x̃k+1 ∈ X̃free. The region
of X̃free ⊂ X̃ is acquired straight forward from Xfree with
additional limitations on the time. Meaning, we can limit the
nodes in the tree to a time frame. Moreover, X̃free could be
used to model dynamic obstacles as it varies in time.
This representation of a state-time vector enables growing a
tree where each node has knowledge of its state at a specific
time. Therefore, a goal state-time could be defined and a
trajectory could be planned by growing a tree, searching
for a node close enough to the goal state-time. A node is
considered to be close enough to a goal state if a predefined
metric ρ∗ (to be defined) is smaller than a specified overall
tolerance. The tolerance must incorporate an allowed time
tolerance. Such method enables trajectory planning reaching
a goal in a desired time with the time tolerance accuracy.

6746

Fig. 2. Example of (a) a one degree of freedom motion by time and (b)
its representation in state-time space.

B. State-Time of the Dynamic Goal
We now need to refer to the matter of the dynamic goal. As

mentioned, we assume full knowledge of the goals dynamics.
That is, q(t) ∈ X ∀t ∈ [0, tg] could be fully predicted. The
basic idea is to sample the goals trajectory in Δtgoal time
intervals and acquire the goal set X̃goal. However, we have
no need for samples which are not in the allowed space X̃free.
Therefore, we sample q(t) to form

X̃goal = {q̃1, ..., q̃z} ⊂ X̃free (7)

where a sampled state-time vector i is calculated to be

q̃i =

[
q(i ·Δtgoal)
i ·Δtgoal

]
(8)

and z = 1, 2, ..., � tg
Δtgoal

�. For convenience, in this work
we choose the systems time intervals Δt to be equal to the
goals time intervals Δtgoal. Figure 2 shows an example for
sampling of a one degree of freedom motion by time q(t)
(Figure 2(a)) to the state-time space X̃goal (Figure 2(b)).

C. Time-Based RRT
In the previous subsections we have defined the state-time

space and the sampling strategy for the dynamic goal. We
present how the TB-RRT is grown. The algorithm proposed is
a greedy one which stops once a solution is found. However,
it could be expanded to find an optimized one by finding all
solutions in K iterations and choosing the one which best
minimizes some optimization criteria.
Algorithm 1 presents the main steps in expansion of the TB-
RRT and searching for a trajectory from initial state-time x̃o
to any goal state-time q̃i ∈ X̃goal. Similar to the original
RRT algorithm, the tree T is initialized with the start state-
time (step 1). The FOR loop (steps 2-15) is set to run a
predefined number of iterations K. This enables the user to
limit the run in terms of runtime or memory usage. However,
the FOR loop could be replaced by an infinite loop as there
is a stoping condition to terminate the run once a solution
is found. The algorithm samples a random state-time vector
x̃rand (step 3) within X̃ and finds its nearest node x̃i ∈ T
to it (step 4). An input ui is selected to impose motion from
x̃i towards x̃rand (step 5). That is, by applying the chosen
input ui on the differential constraint of eq.(6), we obtain a
new node x̃i+1. The control input ui will be chosen such
that x̃i+1 ∈ X̃free. Now, we have to check if moving in this

direction and magnitude is feasible (steps 7-14). Therefore,
we check if the new node x̃i+1 is in X̃free. If true, it adds
the new node to the tree and stores connection between x̃i to
x̃i+1 with control input ui. If the new node is not feasible,
the algorithm continues to a new iteration.

Algorithm 1 Search for trajectory to dynamic goal
Input: x̃o, X̃free and X̃goal.
Output: Trajectory and control inputs from x̃o to x̃goal(t).
1: Initialize tree T with x̃o.
2: for k = 1→ K do
3: x̃rand ← Random state-time vector.
4: x̃i ∈ T ← Nearest Neighbor(T , x̃rand).
5: Select ui to move from x̃i towards x̃rand.
6: x̃i+1 ← x̃i + [f(x̃i,ui) 1]TΔt.
7: if x̃i+1 ∈ X̃free then
8: Add x̃i+1 to T .
9: Add edge x̃i

ui→ x̃i+1 to T .
10: if ρ∗(x̃i+1, X̃goal) < ε then
11: Calculate path P in T from x̃o to x̃i+1.
12: return P .
13: end if
14: end if
15: end for

The last step of the algorithm is to check whether the new
node x̃i+1 is close enough to a state-time vector in X̃goal to be
considered as the same. Most implementation of the RRT use
the simple Euclidean metric between two vectors. However,
such metric does not take into account the unit difference in
the state-time vector components. It is problematic to treat
angle units and time units with the same weight. Therefore,
our criterion for two vectors to be considered to the same is if
they are both within an hyper-rectangle (in n+1 dimension).
The size of the hyper-rectangle is defined by the allowed
tolerance vector ε. Each components unit in ε respectively
correspond to the state-time vector x̂. We define our metric
function ρ∗ used in this algorithm to implement this by

ρ∗(x̂i+1, X̃goal) = |x̃i+1 − q̃ξ| (9)

where q̃ξ = Nearest Neighbor(X̃goal, x̃i+1). That is, we
find the nearest point in X̃goal to the new point and check if
they are both in the same hyper-rectangle with edge lengths
of ε (step 10).
If the above condition is true, a node in the tree was
found which is close enough to a state-time vector in X̃goal.
Therefore, the final step will be to find a path in the tree from
its root (the initial state-time) to the goal node (step 11). This
could be done with any tree search algorithms such as A∗,
DFS, BFS, etc [10].
Figure 3 presents a TB-RRT of a pendulum and its trajectory
toward a static goal. A funnel shape tree could be seen
starting from the initial state-time. For each node, its siblings
could only be in direction where time increases. That is, the
tree is constructed such that the system can reach many states
in the tree and time will always increase. The box at the goal
state-time illustrates the allowed tolerance of the algorithm.

6747

Fig. 3. A TB-RRT of a Pendulum and a trajectory to the goal state-time.
The box represents the allowed goal region X̃goal.

Once a node of the tree is positioned in the box, the algorithm
terminates and the trajectory is calculated from initial state
time to final state-time node. The thick red line indicates for
the path in the tree.
The next section provides some example applications for the
algorithm and presents simulations validating the method.

V. APPLICATIONS AND SIMULATIONS
In this section we present two applications and simulations

of the method: the first is a simple one degree of freedom
bat hitting a moving ball, the second is a motion planning
of a three degrees of freedom manipulator to catch a moving
object. A performance analysis is then presented.

A. One degree bat hitting a ball
The first simulation we conducted was applying the TB-

RRT method to a one degree of freedom bat rotating on an
horizontal plane. The bat with mass m = 2kg and length
l = 0.2m has the following equation of motion:

1

3
ml2θ̈ = u . (10)

where the the bats angle is limited to be 0 ≤ θ ≤ π
2 . Initial

state-time of the bat is along the x-axis (π/2 radians) with
zero velocity x̃o = [π2 0 0]

T . The motor at the axis of the
bat can only apply torque up to |umax| = 2Nm.
The bat’s goal is to hit a planar ball moving on a straight
line with constant velocity. That is, the goals differential
constraint is given by

q̇ =

⎛
⎜⎜⎝
V xb
V yb
0
0

⎞
⎟⎟⎠ , qo =

⎛
⎜⎜⎝
xb,o
yb,o
V xb
V yb

⎞
⎟⎟⎠ (11)

where V xb and V yb are the balls constant velocities and
xb,o, yb,o are its initial positions at time t = 0. This repre-
sentation should be transformed to a state-time space with
reference to the bat. The position of the ball is transformed
to polar coordinates where the angle denotes the angle the bat
should have in order to hit the ball. The state-time tolerance

Fig. 4. The TB-RRT of a one degree bat hitting a ball. The green circles
are the balls state-time vectors and the red path is the trajectory from the
initial state-time to a goal state-time.

+

−
PD Controller

Dynamic
System

TB-RRT
Planner

uexd x

Fig. 5. The PD control scheme. The TB-RRT planner outputs the desired
trajectory.

for terminating the search is given by the tolerance vector
ε = (2.8[o] 0.2[rad

s
] 0.03[s])T . For demonstration purpose

and to demonstrate a full state goal, we set a constraint that at
encounter, the bat will have the linear velocity at the contact
point opposite but equal to the balls velocity component
perpendicular to the bat. The offset of bat relative to the
balls center due to the balls radius was taken into account.
The motion of the ball was sampled only where it is located
in the quarter circle representing the bats work space.
Under these properties and constraints, the algorithm was
simulated and after 1,726 iterations outputted the TB-RRT
shown in Figure 4. The green circles mark the sampled state-
time vectors of the ball. The red curve presents the path
solution from the initial state time to the goal one.
The algorithm outputted a set of discrete states in time and a
set of control inputs. We may use the control inputs directly
for the motor with no feedback control on the trajectory
position. However, for overcoming disturbances and errors
there is a need for feedback control. Therefore, we use the
set of discrete states in time as the reference trajectory to a
closed loop PD controller as seen in Figure 5. The TB-RRT
planner outputs the desired trajectory from the initial state-
time to the final. The reference signal is then fed into a simple
PD controller with feedback to calculate the appropriate
closed loop control input to the dynamic system. Figure 6
presents the trajectory of the bat. The dashed curve is the
trajectory from the TB-RRT planner. The continues curve
is the controlled trajectory simulated with SIMULINK. The
ball’s trajectory could also be seen as the dotted curve. The
ball’s curve starts at 0.46s because only then it enters the
workspace of the bat. Rendezvous between the curves show
that at tf = 0.505s the state-times of the bat and the ball are

6748

Fig. 6. The angle (up) and angular velocity (down) vs. time of the bat
hitting a ball.

Fig. 7. The motion of the bat to hit the moving ball. The dashed line marks
the workspace of the bat.

equal. Figure 7 shows snapshots of the bats motion to hit the
ball.

B. Manipulator catching a moving object
In the second simulation we used a more complex dynam-

ics. A vertical planar three degrees of freedom manipulator
was chosen. Its dynamics is given by the following equation
of motion

M(z)z̈+ C(z, ż)ż+G(z) = u (12)

where z(t) = [θ1 θ2 θ3]T is the joint configuration, M(z)
is the inertia matrix, C(z, ż) is the matrix of coriolis and
centrifugal torques, G(z) is the gravity vector and u(t) is

the control input vector. The masses of the links are m1 =
1[kg], m2 = 1.25[kg], m3 = 0.75[kg] and their lengths are
L1 = 0.2[m], L2 = 0.25[m], L3 = 0.15[m]. Their center of
masses are in the middle of each link. From this definition
we perform order reduction such that x1 = z, x2 = ż and
construct the systems state-time representation as follows:

˙̃x = f(x̃,u) =

⎛
⎝ x1
M−1 (u− C(x1,x2)x2 −G(x1))

1

⎞
⎠
(13)

where x̃ = [x1T x2T 1]T is the state-time vector repre-
sentation of z. The upper two joints were constrain to be
−56π ≤ (θ2, θ3) ≤

5
6π and the joints velocity were limited up

to 20 rad/sec. The joint torques were limited to a maximum
of 5 N/m.
The manipulators goal is to catch a moving object such that
at the moment of rendezvous the end-effector will have the
same velocity (magnitude and direction) as the object. The
object was given an arbitrary polynomial trajectory given by

r(t) =

(
−251.5t4 + 219.8t3 − 49.6t2 + 0.2
−298.7t4 + 237.5t3 − 45.5t2 − 0.2

)
, (14)

where q = [rT ṙT]T is the objects state. This polynomial
representation can be used to simulate the dynamics of
a free flying object with the influence of gravitation and
air drag damping. The goal objects differential constraint
should be transformed to the state-time space as described.
However, the manipulator state space is represented based
on the joint angles and the object is based on its cartesian
position. Therefore, the objects state space is transformed to
the manipulators state space using the inverse kinematics of
the manipulator. That is, the new sampled state space q∗ of
the object is given by

q∗ =
(
h(r)
J−1ṙ

)
(15)

where h(u) is the transformation from the end-effectors po-
sition to the joints configuration and J is the Jacobian matrix
mapping joint velocity to end-effector velocity. Therefore, q∗
is the state of the object represented in the manipulators state
space.
Figure 8 presents a simulated trajectory of the manipulator
to grasp the moving object. The trajectory was calculated
with the TB-RRT algorithm and generated this solution
after 21,988 iterations. In this case, after 0.4 seconds the
manipulator was able to reach the object with the same
velocity. Figure 9 presents snapshots of the manipulators
motion to catch the moving object. It should be mentioned
that a method to avoid collisions of the manipulators links
were not implemented but could be done in the future by
excluding parts of the state-time space from X̃free.

C. Analysis
Table I shows some performance results of the presented

simulations. Runtime and iteration number statistics is shown
after 10 simulation runs. Runtime is increased as well as
the number of iterations when the state space dimension

6749

Fig. 8. The trajectory of the end-effector and the object. After 0.4 seconds
they have the same position and velocity.

Fig. 9. The motion of the manipulator to catch the object.

increases. The simulation for the bat was done with time
tolerance of ±0.04 seconds. Figure 10 demonstrates the
sensitivity of the algorithm with reference to time toler-
ance increase. Here, decrease in the runtime and number
of iterations can be seen as the time tolerance grow. As
expected, with larger tolerances more solutions could be
found, however, with less accuracy.

VI. CONCLUSIONS
In this paper we have presented an approach for trajectory

planning under specific time constraint. Moreover, we have
extended the approach for rendezvous planning between a
controlled dynamic system and an uncontrolled one. The

TABLE I

System Iterations Runtime
min max min max

Bat 1,287 19,344 1.17s 193.5s
Manipulator 11,945 36,365 31.5s 1633s

Fig. 10. Sensitivity of the algorithm in terms of runtime and iteration
number as the time tolerance increases.

TB-RRT approach was presented building a probabilistic
tree in the defined state-time space, taking the dynamics of
the systems into account. Simulations of typical applications
were shown to demonstrate and validate the method.
Further work on this approach should deal with computa-

tion time of expanding the tree to enable real-time planning.
Such work should address decreasing the complexity of
nearest neighbor search algorithms. Another approach could
be real-time expansion of the existing TB-RRT based on
feedback data only in regions which are relevant to the
systems motion.

REFERENCES
[1] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Trajectory

planning in robotics,” Mathematics in Computer Science, vol. 6, no. 3,
pp. 269–279, 2012.

[2] S. Ge and Y. Cui, “Dynamic motion planning for mobile robots using
potential field method,” Autonomous Robots, vol. 13, no. 3, pp. 207–
222, 2002.

[3] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning
of robot manipulators,” IEEE Transactions on Industrial Electronics,
vol. 47, no. 1, pp. 140–149, 2000.

[4] Z. Bien and J. Lee, “A minimum-time trajectory planning method for
two robots,” IEEE Transactions on Robotics and Automation, vol. 8,
no. 3, pp. 414–418, 1992.

[5] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic planning,”
in Proceedings. IEEE International Conference on Robotics and Au-
tomation, vol. 1, 1999, pp. 473–479.

[6] K. S. Erer and O. Merttopçuoglu, “Indirect Impact-Angle-Control
Against Stationary Targets Using Biased Pure Proportional Naviga-
tion,” Journal of Guidance Control Dynamics, vol. 35, pp. 700–704,
Mar. 2012.

[7] M. Mehrandezh, N. Sela, R. Fenton, and B. Benhabib, “Robotic
interception of moving objects using an augmented ideal proportional
navigation guidance technique,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 30, no. 3, pp. 238–250, 2000.

[8] J. Michael, K. Chudej, M. Gerdts, and J. Pannek, “Optimal ren-
dezvous path planning to an uncontrolled tumbling target,” eprint:
arXiv:1307.1327, 2013.

[9] T. Rybus and K. Seweryn, “Trajectory planning and simulations of
the manipulator mounted on a free-floating satellite,” in Aerospace
Robotics, J. Ssiadek, Ed. Springer, 2013, pp. 61–73.

[10] R. Sedgewick and K. Wayne, Algorithms, 4th Edition. Addison-
Wesley, 2011.

6750

