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Abstract—In this paper we present the swing-up regrasping
problem where an object is manipulated using a robotic arm
around a point pinched by the arm’s gripper. The aim of the
regrasping is to manipulate the object from an initial angle to
regrasp it on a new desired angle relative to the gripper. The
pinching point functions as a semi-active joint where the gripper
is able to apply only frictional torques on the object to resist its
motion. We address the problem by proposing a novel approach.
The approach incorporates an impulse-momentum method with
an LQR-based controller for stabilization on the desired angle.
In particular, a sub-optimal Clipped LQR controller is presented
to deal with the dissipative semi-active joint. The interaction of
these methods with the unique property of the semi-active joint
is investigated and analyzed. Simulations on a six degrees of
freedom manipulator regrasping a bottle validate the proposed
approach. Moreover, a full experiment was conducted on a
robotic arm to test the approach and the control of a semi-
active joint. The simulations and experiment have proven the
feasibility of the method.

Index Terms—Regrasping, robotic manipulations, swing-up,
Clipped LQR.

I. I NTRODUCTION

The use of the same end-effector to grasp an object in
various orientations performing different tasks dramatically
increases its capabilities. This can be achieved by alternating
grasp configurations of the object with respect to the task
to be done and is known asRegrasping[1]. The ability of
robots to perform regrasping tasks enhances their capabilities
and dexterity. For instance, in assembly lines, the same arm
can perform multiple operations on the same part and by that
decrease the number of robotic arms in the plant. However,
for efficiency, the regrasping should be done fast. Therefore,
dynamic regrasping is preferred utilizing the arm’s dynamics,
gravity, and inertia to manipulate the object in the gripper. Our
long-term goal is to build a library of basic dynamic regrasp-
ing manipulations that will serve as building blocks for higher
task executions. In this paper we address a part of the dynamic
regrasping problem termedSwing-up Regrasping. Swing-up
regrasping motions are usually performed by human hands to
alter the angle between the palm and a grasped object (Figure
1). This is a dynamic manipulation to grant the object enough
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energy to reach the desired angle while rotating around a pivot
point between the pinching fingers. Gravity and friction can
assist the swing-up manipulation. The fingers vary the force
they apply on the object to control the velocity and final pose
through friction.

Fig. 1. Hand swing-up regrasping of a marker from (a) initial angle to (c)
final angle.

Current regrasping methodologies work only with highly
redundant (and hence expensive) hand architectures, and
require agile sensory feedback. In the robotics literature, there
are three known approaches for regrasping. The first approach
is picking and placing where the object is placed on a surface
and picked up again in a different grasp configuration [2], [3].
The pick and place approach is rather slow and demands a
large surface area around the robot. The second approach is
the use of the end-effector’s degrees of freedom to move be-
tween contact points while maintaining a force-closure grasp
during the entire process. This approach is also calledquasi-
static finger gaitingin the robotics literature [4], [5], [6], [7],
[8], [9]. However, quasi-static finger gaiting is quite wasteful,
as it requires sufficiently many degrees of freedom (requiring
highly redundant finger linkages) to manipulate the grasped
object between two grasp configurations while maintaining
force closure grasps. The third approach is much faster and
efficient; however it is more complex, as it uses dynamical
manipulations to switch between grasp configurations. The
end-effector allows relative velocity with the object after
releasing it through a series of dynamic manipulations and
regains fixed contact by catching it at the final pose [10], [11].
Most work that utilize dynamic manipulations use a multi-
fingered highly dexterous hand for performing regrasping.
The work in [12] proposed a regrasping strategy based on
visual feedback of the manipulated object, this with a multi-
fingered hand. In [13] a regrasping method was introduced
using a 3-finger hand with no external sensing for feedback.

In this paper we synthesize an approach for a robotic
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arm to perform a swing-up regrasping from a lower energy
angle to an higher one. The swing-up is done by accelerating
the gripper pinching a pivot point on the object to increase
its energy. It should be noted that unlike the human hand,
a robotic arm can flip the object upside down and let the
object free fall to the desired angle. This is analogous to
flipping the human hand behind the back, which is of course
not possible. We aim to mimic the swing-up motion of the
human hand, which is limited by the shoulder. Our proposed
approach for the swing-up regrasping problem is a gravity-
assisted approach where the object is swung-up above the
desired angle using an impulse-momentum method and then
stabilized using a modified LQR controller.

The presented swing-up problem is partially inspired by the
swing-up and stabilization control of a Pendubot [14] and an
inverted pendulum [15] at the upright position. Energy control
is widely used in such problems to stabilize the system’s
energy at a desired energy value [16], [17], [18]. This control
method is used for swing-up to a region close enough to
the desired state followed by a linear controller to balance
on the desired state. Another approach for the swing-up is
the impulse-momentum method [19], [20], where an initial
impulse is applied to the system for a short period of time,
which causes change of momentum and therefore transfer of
energy.

An important matter discussed in this paper is the nature of
the joint formed at the pinching (pivot) point. The gripper’s
jaws hold the object and enable relative velocity. Thus,
torsional friction exists at the pivot and is controlled by the
normal force of the jaws. Therefore, the pivot point is a joint
that is able only to resist the motion of the object, i.e., can
only dissipate energy. Such a joint is termed aSemi-Active
joint and its notion arises from semi-active friction dampers
[21], [22], [23]. By controlling the normal force, semi-active
friction dampers greatly improve performance compared to
passive dampers. Moreover, they consume a fraction of the
power fully active dampers require. The common control
method for semi-active friction dampers is the use of a
Clipped Linear Quadratic Regulator (cLQR) [24], a version
of which is applied in this work. We apply the notion of
a semi-active joint and its control method to the robotic
field. We model a semi-active robotic joint and control the
swing-up and stabilization using these methods. This research
not only proposes a novel approach but also investigates
the composition of a semi-active joint with various control
methods for the swing-up regrasping problem.

The paper is organized as follows. Section II defines the
swing-up regrasping problem along with its mathematical
models. The proposed approach is presented in Section III
along with theoretical background. Simulations on a six
degrees of freedom (DOF) robotic arm regrasping a bottle and
a full experiment are presented in Section IV. Conclusions
and future work are discussed in Section V.

II. PRELIMINARIES

In this section we present the robotic arm model and object
to be regrasped. The frictional interface model between the
arm and object is presented along with the minimal normal
force needed to prevent tangential slippage. Further, the prob-
lem definition is presented along with several assumptions.
Finally, two conceptual solution approaches are introduced.

A. System model & dynamics

Consider ann-joint manipulator given by the dynamic
equations of motion

D(q)q̈ + C(q, q̇)q̇ + G(q) = um, (1)

whereq(t) = [ϕ1(t) ∙ ∙ ∙ϕn(t)]T ∈ Rn is the vector of joints’
angles at timet, um(t) = [u1(t) ∙ ∙ ∙ un(t)]T ∈ Rn is the
torque control vector,D is ann × n inertia matrix,C is the
n × n matrix of centrifugal and Coriolis acceleration terms,
and G is an n × 1 vector of generalized gravitational force.
The world coordinate frameO is fixed at the base of the
robotic arm. A simple jaw gripper is fixed at the tip of link
n. Both jaws of the gripper are parallel such that they can
apply parallel and equal forcesfN ≥ 0 on a grasped object.
The gripper’s pitch angle is denoted byψ and is measured
relative to the vertical axis.

Given objectB with massm and lengthL held by the
gripper at pointe on the object termed the pivot point between
the gripper and object. Leth be a plane containing the axis
from link n’s joint to point e and parallel to the gripper’s
jaws. Let the moment of inertia ofB be I with respect to an
object’s Center of Mass (COM) on an axis perpendicular toh.
Furthermore, letl be the distance from pivote to the COM’s
projection onh. Angle θ is defined to be the angle between
link n’s axis and the axis formed by the COM ande. The
swing-up problem is basically a planar problem. Therefore,
the whole regrasping motion is performed in planeh and we
assume thath is parallel to the gravity vectorg. Figure 2
is a planar example of such a system whereh is the robot’s
motion plane.

Friction exists between the jaw gripper and the object
at pivot point e. We assume a soft-finger contact model
[25] between the jaw and object surfaces. In addition, for
simplicity we denote both frictional torques exerted at each
jaw as a single lumped equivalent torqueτ , which of course
equals their sum. When there is no relative velocity (i.e.,
θ̇ = 0), the static friction torqueτs exerted on pivote is,
according to theCoulomb friction model,

|τs| ≤ γfN (2)

where γ > 0 is the static coefficient of torsional friction.
When relative velocity exists,̇θ 6= 0, we use theSignum-
Friction Model [26] expressing the friction torque as

τm = −νfNsgn(θ̇) (3)
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Fig. 2. Object gripped by the robotic arm with angleθ.

whereν is the dynamic torsional coefficient of friction. Note
that τm is a dissipative force and therefore has opposite di-
rection to velocity. For changing velocities where the velocity
crosses theθ̇ = 0 line, switching between models (2) and
(3) leads to numerical difficulties. Karnopp [27] proposed to
define a small neighborhood of zero velocity,|θ̇| ≤ ε for some
small ε > 0, where the friction torqueτ is equal to the net
torqueτt acting on the object in order to preserve equilibrium.
To maintain zero velocity, the normal forcefN will be chosen
to counter-balance the net torque withfN = |τt|/γ. The
overall friction model used in this work defines the friction
torqueτ with respect to the normal force as

τ(fN ) =

{
−γfNsgn(τt), |θ̇| ≤ ε

−νfNsgn(θ̇), |θ̇| > ε
. (4)

The presented model is ann-degrees robotic arm holding
an object and enabling rotation around the holding pivot point.
One may view this model as an under-actuated(n+1)-degrees
of freedom arm withn actuated joints and one semi-actuated
joint [22]. A semi-actuated joint enables only counter-acting
the motion by controlling the normal force applied at the pivot
point. That is, we apply a positive normal force while the
outcome friction torque must satisfy the dissipative constraint

τ ∙ θ̇ < 0 . (5)

The control of such joints imposes difficulties as a control
torque cannot be applied to assist in the direction of motion
and it must constantly satisfy (5).

The presented(n + 1)-degrees of freedom system can
be decoupled to two sub-systems. The first sub-system is
the object’s model similar to a simple pendulum. We give
this object model the termObject-Pendulum Model(OPM).
However, the OPM’s pivot has a control input of normal force
fN that exerts friction torque and a control input for the
accelerationa generated at pivote by the arm. Acceleration
a is given by

a = J q̈ + J̇ q̇ (6)
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Fig. 3. (a) Object-Pendulum model and (b) Forces acting on the OPM.

whereJ is the Jacobian matrix of the robotic arm mapping
the joint’s angular velocity to the gripper’s linear velocity. The
OPM’s coordinate frameOp is fixed to the pivot with itsyp-
axis parallel but opposite to gravity. We measure the OPM’s
angleφ relative to theyp axis and the positive direction is
taken counter-clockwise. In this form, angleφ equals the sum
of the gripper’s pitch angle and the relative angle, that is,
φ(t) = ψ(t) + θ(t) (Figure 3a). For consistency, angleφ
is measured such that|φ(t)| ≤ π. In this configuration, the
OPM’s equation of motion is given by

Mφ̈ − mgl sin φ + m(a ∙ r̂)l = τ(fN ) (7)

where M = I + ml2, r̂ = ( − cos φ − sin φ )T is a
unit vector perpendicular to the OPM’s length andτ(fN ) is
the friction torque according to (4). For simplicity and to
mimic the motion of the human arm, while controlling the
motion of the OPM’s gripper, we constrain the arm to provide
acceleration only in thexp direction. Therefore, the equation
of motion of the OPM is

Mφ̈ − mgl sin φ − mal cos φ = τ(fN ) (8)

wherea is the acceleration intensity in the horizontal direc-
tion. Further, letx = (x1 x2)T be the state of the system
wherex1 = φ andx2 = φ̇ = ẋ1. System (8) can be rewritten
in the state space form as

ẋ = f(x,u) =

(
x2

M−1(τ + mgl sin x1 + mal cos x1)

)

(9)

whereu = (τ a)T . Note that although systemf(x,u) has
two inputs and a one degree of freedom system needs only one
for stabilization, the linearization point is not an equilibrium.
Therefore, inputa cannot stabilize the system by its own nor
the semi-active jointτ , which has a dissipative property.

The second sub-system is the robotic arm given in (1). The
arm has two roles. Its first role is to provide the acceleration
a at the pivot point of the OPM to control its angleφ. The
second role is to apply, using the arm’s gripper, normal force
fN at the pivot point to enable or disable relative motion
between the OPM and the gripper. In this work we focus on
the control of the OPM usingfN and a. Nevertheless, the
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control of the robot to provide accelerationa is well known
[28] and is not in the scope of this paper.

B. Problem Definition

The regrasping problem is defined as follows. ObjectB is
held by the gripper of system (1) as described in section II-A.
Given the initial angleθ(t = 0) = θo between objectB and
the gripper, perform some manipulation motion such that

lim
t→∞

θ(t) = θd , lim
t→∞

θ̇(t) = 0. (10)

In other words, the manipulation motion should bring the
object to relative angleθd with zero velocity. In terms of the
OPM configuration, with constant pitch angleψ easily set by
the manipulator, the initial OPM angle isφo = θo+ψ. Hence,
the goal in terms of the OPM angle would be

lim
t→∞

x(t) = xd (11)

wherexd = (θd + ψd 0)T = (φd 0)T .
Several assumptions are made in this work:

• It is assumed that the state (angles and angular velocities)
of the OPM and robot are fully known. That is, feedback
of the anglesq and θ is acquired at all times, as well
as their angular velocitieṡq and θ̇. This state feedback
can be acquired by cameras or motion capture systems.
However, sensing and estimation are beyond the scope
of the paper.

• The propertiesI,m, l, L of objectB are assumed to be
fully known.

• The joints’ torques of the robotic arm are not limited
and can supply any desired gripper acceleration. Torque
saturation is beyond the scope of this paper.

C. Gripper Holding Force

The minimal normal force required to hold the object in
the gripper without linear slippage due to inertial force is
calculated next. Letωgp and αgp be the gripper’s angular
velocity and acceleration vectors, respectively. The angular
velocity vectorωl and acceleration vectoṙωl of the OPM are
given according to the Newton-Euler method [29]

ωl = ωgp + φ̇zl (12)

ω̇l = ω̇gp + φ̈zl + ωgp × (φ̇zl) (13)

where zl is the rotation axis vector ofB about the pivot
point e calculated according to the robot’s direct kinematics.
By application of the Newton-Euler method [30], the linear
acceleration of the OPM’s COM is

v̇l = v̇gp + ω̇l × l + ωl × (ωl × l) (14)

where l is the vector from pivote to the OPM’s COM
represented in theO frame andvgp is the gripper’s linear

velocity vector. Consequently, the inertial forces acting on
the OPM’s COM are given by

Fl = mv̇l. (15)

Note that the expression in (15) contains terms ofφ̈ andq̈ that
are difficult to measure. Thus, they are calculated based on the
models (8) and (1), respectively. However, we are interested
in the forces acting on the OPM’s motion plane. In particular,
we compute the radial forcefr acting along the OPM and the
tangential forceft acting perpendicular to the OPM (Figure
3b). Both are calculated by

fr = Fl ∙ l̂ , ft = Fl ∙ r̂ (16)

where l̂ is a unit vector in direction ofl.
From (16), the net force that must be resisted at the pivot

is f =
√

f2
r + f2

t . Therefore, the normal force exerted by
the gripper must satisfy|f | ≤ μfN where μ is the linear
coefficient of friction. During swinging of the OPM, we set
the normal force to be as minimal as possible with a user-
defined safety factorα > 1, that is,

fN =
α

μ
f =

α

μ

√
f2

r + f2
t . (17)

The safety factorα is used to keep the normal force above the
minimal value in case of small disturbances. In such a case,
there will be no linear slippage. In this work we assume that
the inertial forces (16) developed on the OPM are not that
large such that the resulted normal forcefN from (17) is able
to prevent linear slippage but will not cause angular sticking.
This assumption is validated in the simulation sections.

III. SWING-UP REGRASPINGMOTION

In the proposed motion, the OPM is swung-up above the
desired angle from where the motion is toward the desired
state with the assistance of gravity. The motion is divided into
two phases. The first phase is theSwing-Upphase where the
OPM is provided with enough energy to reach the Region-of-
Attraction (ROA) of the desired final statexd. The definition
of the ROA will be given further on. The swing-up phase is
based on an Impulse-Momentum approach where the system
is given enough energy to reach above the height of the goal
state. Once the OPM is in the ROA, at some timetc the
second phase termedGravity-Assisted Stabilization(GAS) is
initiated, aimed to stabilize the OPM in its goal state. A
limited Linear Quadratic Regulator (LQR) controller termed
Clipped LQR(cLQR) is used based on the properties of the
semi-active joint of the pivot.

In this section, we will present the cLQR controller for
the GAS phase and discuss the terms of its operation. Note
that after the swing-up phase brings the OPM to the ROA at
time tc, the robotic arm stops and remains stationary. Hence,
the acceleration input is set toa(t > tc) = 0 and the pitch
ψ(t > tc) = ψd = Const. remains constant. Therefore, in
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this GAS phase, we assume zero motion of the robotic arm
apart from the OPM and the closing/opening gripper. Further,
the ROA is defined based on such a controller to further
understand what is expected of the swing-up phase presented
later on. We begin by discussing the GAS phase, which will
define the needs for the first phase.

A. LQR control of a fully actuated pendulum

We first examine the stabilization of a fully actuated pendu-
lum, that is, with an actuator not constrained to the dissipation
constraint (5). Consider the system in (9) witha = 0. We wish
to stabilize the system onxd. Further, the desired torqueτd

to hold the OPM stationary atxd must satisfyf(x, τd) = 0,
which yields the gravity resisting torqueτd = −mgl sin x1.
Therefore, we define the error statexe = x−xd and the input
errorτe = τ−τd. Linearization of the system around(xd, τd)
yields the linear time-invariant continuous-time system

ẋe(t) = Axe(t) + Bτe(t) (18)

where

A =

[
0 1

M−1mgl cos φd 0

]

, B =

(
0

M−1

)

, (19)

andxe(tc) = x(tc)−xd is the initial condition. We define a
quadratic cost function of the form

J(xe) =
∫ ∞

tc

(
xe

T Qxe + Rτ2
)
dt (20)

with Q = QT ≥ 0 andR > 0 as positive definite weighting
matrices that provide an optimal feedback control [31]

τ∗
e = −R−1BT Pxe = −Kxe ⇒ K = −R−1BT P (21)

whereP is the solution of the Riccati equation

Q − PBR−1BT P + PA + AT P = 0 . (22)

The cost-to-go of the optimal control policy is

J∗(xe) = xe
T Pxe . (23)

From (21), the feedback control that would be applied to (9)
(or (8)) would be

τ∗ = −K(x − xd) + τd . (24)

The control law in (24) could provide torque in both
clockwise and counter-clockwise directions, without taking
into account the dissipative constraint in (5). Torques that do
not satisfy (5) demand negative normal force from the gripper,
a demand that cannot be satisfied. Therefore, attention must
be paid and the controller should be modified to forcefN ≥ 0.
In this case, the control signal from (24) is clipped, and the
modified controller is termedClippedLQR (cLQR) [22], [24].
However, a distinction must be made between two different

motions. The first kind is when the motion att > tc is toward
the desired state with the assistance of gravity. This happens
when the conditions

|φ| < |φd| and
(
sgn(φ̇) = sgn (mgl sin φ) or φ̇ = 0

)

(25)
are satisfied. The second kind is when the OPM moves toward
the goal but encounters resistance from gravity. This happens
when

|φ| > |φd| and sgn(φ̇) 6= sgn (mgl sin φ) . (26)

In such motion, the OPM will swing toward the goal against
gravity and be caught at the desired angle, preferably with
zero velocity. An energy control based approach for such mo-
tion proposed in [32]. This kind of motion is not considered
in this paper and we deal with the first kind. Next, we propose
the cLQR controller to stabilize the OPM.

B. Clipped LQR stabilization

The GAS phase is characterized by motion toward the
goal while the angular velocity has the same direction as
the gravity torque acting on the OPM (Condition (25)). Let
regions I and II in Figure 4 be the regions above the goal
angle and in the left half-plane. They are considered united
for now, while a distinction between them would be given
later on. Consider a simple case where the OPM is located
in region I or II with zero or positive velocity (counter-
clockwise toward the goalφd). In such case, a fully actuated
OPM with control law (24) would have one of the control
torqueτ∗ profiles shown in Figure 5. The exact profile will
be determined by the initial statex(tc) at the time of initiating
the controller. Some of the profiles begin with positive torque
and converge to the negative steady-state holding torqueτd. In
such cases, the optimal control applies positive torque, in the
direction of velocity, to accelerate and assist the motion just
before applying negative torque for deceleration and braking
at the goal angle. However, a semi-active joint with model (4)
could not perform such transition as it cannot apply negative
normal force at the contacts. Recall that in this case the
velocity is positive and according to the dissipative constraint
in (5), the friction torque can only be negative. In this case,
implementing a Constrained LQR controller [33], [34] is
possible. However, such a controller is more complex to apply
and we seek for a much simpler controller. Hence, we clip
the above LQR control to apply only negative torque, that is,
only positive normal force.

The pivot of the OPM function as a semi-active joint
and the LQR controller can only supply negative torque by
applying positive normal force. To solve this, we can take
advantage of gravity for assistance when the optimal control
torque is positive. Thus, the aim of the swing-up phase will be
to bring the OPM to region I or II as shown in Figure 4 with
zero or positive velocity. However, if region I is reached with
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Fig. 5. Torque input for a fully actuated OPM in GA motion.

zero or positive velocity, the OPM will be allowed to swing-
down freely until it reaches the ROA of the LQR, that is,
region II. Note that in the swing-down, the normal force will
be defined to resist inertial forces as defined in (17). Region II
is termed GAS-ROA and is defined to be the region where the
optimal torque isτ∗ < 0. The expression forτ∗ is linear and
the condition for entering the GAS-ROA is therefore given
according to (24) by

τ∗ < 0 ⇒ x2 >
1
k2

(τd − k1(x1 − φd)) (27)

If the swing-up manipulation brings the OPM directly to the
GAS-ROA, satisfying (27),τ∗ is initiated there without free
swing-down. In summary, the cLQR is initiated at timetc
when (25) is satisfied and it defines the control normal force
by

fN (t > tc) =

{
1
ν |τ

∗|, x2 > 1
k2

(τd − k1(x1 − φd))
1
μ

√
f2

r + f2
t , otherwise

.

(28)
Next, we refer to the swing-up phase using a method based
on impulsive-momentum approach to bring the OPM to the
region I or II above the goal.

C. Impulse based Swing-up

The purpose of the swing-up phase is to bring the OPM
above the desired goal angleφd to φsu, where0 < φsu < φd

(the choice forφsu will be discussed later on) and from
where the cLQR will be initiated. For that matter we use an
Impulse-Momentum approach inspired by [19]. The stages
of the manipulation in the left half-plane are organized in
Table I. Specific values and notations in the table would be
defined in the proof of Theorem 1 bellow. At timet = 0
(stage 0), the object and arm are stationary at their initial
pose. In the Impulse-Momentum approach, we first apply an
initial impulse force (stage 1) at the pivot to grant the OPM
with initial velocity and increase its energy. After impulse, the
OPM will move away from the goal (stage 2) with positive
angular velocity until reaching momentary stop and direction
change. In this stage, the gripper is moved along with the pivot
in a constant velocity to preserve the OPM’s energy while
the object swings toward the goal. We avoid changing the
grippers velocity at this stage as it would result in undesired
increase or decrease of kinetic energy. Then, at the right angle
(to be defined), the gripper is suddenly stopped (stage 3), an
event which causes a change in momentum and increases
the OPM’s energy to the desired level. Therefore, the OPM
will swing toward φsu (stage 4). Once the OPM passes the
goal angleφd and changes its direction again, the cLQR
is initialized (stages 5-6). To simplify our calculations, the
swing-up is done along thex-axis. Moreover, we maintain
constant pitch angle of the gripper, which eliminates its
angular velocity from the equations. Next is the energy
analysis to determine the initial impulse force that will elevate
the OPM to angleφsu.

An impulse force applied at the pivot of the OPM will result
in change of its linear and angular momentum. The following
Theorem defines the magnitude of the impulse forceFimp to
gain the OPM with the desired energy to reachφsu.

Theorem 1. Let ΔEd = Esu
d −E0 be the desired energy gain

for the swing-up whereE0 = mgl(cos φ0 + 1) is the OPM’s
energy at the initial statex0, andEsu

d = mgl(cos φsu +1) is
the desired energy of the goal angleφsu with zero velocity.
The required impulse forceFimp applied at the pivot point
for time intervalΔt1 to gain energyΔEd is

Fimp = ∓

√
2M

Δt1l(cos2 φ0 − 1)

(√
ΔEd + mgl(cos φ0 + 1)

±
√

ΔEd cos2 φ0 + mgl(cos φ0 + 1) . (29)

Proof: An impulsive forceFimp = (Fimp 0 0)T is
applied in thex direction, which causes angular momentum
change according to

− l × FimpΔt1 = M(φ̇1 − φ̇0) (30)

where l = l(− sin φ0 cos φ0 0)T is the vector from the
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TABLE I
STAGES OF THE IMPULSE BASED SWING-UP MANIPULATION.

Index Stage Time Angle OPM vel. Pivot acc. En. gain

0 Initial pose t = 0 φ = φ0 φ̇ = 0 a = 0 0
1 Impulse t ≤ Δt1 φ > φ0 φ̇ > 0 a < 0 ΔE1

2 Const. pivot vel. Δt1 < t < t2 φ > π φ̇ ≥ 0 ⇒ φ̇ < 0 a = 0 0

3 Pivot brake
t2 ≤ t < t3

t3 = t2 + Δt23
φ = π φ̇ < 0 a > 0 ΔE2

4 Swing-up t > t3 φsu < φ < π φ̇ < 0 a = 0 ≈ 0
5 Initiate cLQR t = t4 φ ≈ φsu φ̇ = 0 a = 0 0
6 At goal angle t = t5 φ = φd φ̇ = 0 a = 0 -ΔE

pivot to the COM,Δt1 << 1 is a short time interval where
the impulsive force acts,̇φ0 = 0 and φ̇1 are the angular
velocities before and after the impulse force acts. Solution
of (30) provides the generated velocity after impulse

φ̇1 =
1
M

Fimpl cos φ0Δt1 . (31)

Moreover, the impulsive force generates linear velocity in the
x direction given by

FimpΔt1 = mvc ⇒ vc =
1
m

FimpΔt1 . (32)

During the short time intervalΔt1, the OPM’s angle has
not changed,φ0 = φ1, and therefore no change in potential
energy occurred. Hence, the impulsive force caused only
change in the kinetic energy:

ΔE1 =
1
2
Mφ̇2

1 +
1
2
mvc

T vc −
1
2
Mφ̇2

0 (33)

where the last component is equal to zero by the initial state
definition. Note that there is no energy loss due to friction as
there is no angular change.

Due to the impulsive force, the OPM will rotate counter
to the goal. The gripper now must maintain constant linear
velocity vc = (vc 0 0)T to allow the OPM to momentarily
stop and revert its direction toward the goal without additional
energy change. After the OPM has reversed its direction
due to gravity, a sudden brake of the gripper, while it is
swinging toward the goal, is performed. This sudden brake
would increase the energy of the swinging object and enable it
to reach the goal. If the brake occurs before direction change,
sudden braking will cause energy decay instead of the desired
increase. Such sudden braking is performed using the control
law for the arm’s joints

q̈ = −W q̇ (34)

whereW is a diagonal matrix of positive gains controlling the
exponential decay oḟq. Large gains inW would cause sudden
braking of the gripper in a very short time intervalΔt23.
Moreover, it would cause an impulsive forceFb and moment

Mb on the OPM. The impulsive force and moment would
result in sudden change in the linear and angular momentum
of the OPM, respectively, given by

FbΔt23 = m(v3 − v2) (35)

MbΔt23 = −l × FbΔt23 = M(φ̇3 − φ̇2) (36)

where φ̇2 and φ̇3 are the angular velocities before and after
the sudden braking, respectively.v2 and v3 are the linear
velocities of the OPM’s COM before and after the braking
and are expressed by

v2 = −φ̇2l




cos φ2

sin φ2

0



+ vc, v3 = −φ̇3l




cos φ2

sin φ2

0



 . (37)

By substituting (35) in (36) and using (37), we acquire

φ̇3 = φ̇2 +
1
M

mlvc cos φ2 (38)

From (38) we can easily see that braking at angle

φ2 =

{
0, φ̇2 > 0
π, φ̇2 < 0

(39)

will result in maximum angular velocity and kinetic energy
increase. Without loss of generality, as we work on the left
half-plane, we takeφ2 = π. Braking at that angle will result
in lower demand for initial impulse forceFimp. Therefore, we
define the brake to occur once the OPM points downwards,
that is, onceφ2 = π. This, along with (32) yields

φ̇3 = φ̇2 −
FimplΔt1

M
. (40)

Here also, no angular change is made during the brake time
and therefore there is no change in potential energy, and
no energy loss due to friction. Therefore, the kinetic energy
change due to the sudden braking is

ΔE2 =
1
2
Mφ̇2

3 −
1
2
Mφ̇2

2 −
1
2
mvc

T vc . (41)

Conservation of energy fromt = Δt1 just after the first
impulse to t = t2 right before the brake provides us with
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the equality

1
2
Mφ̇2

1 +
1
2
mvc

T vc + mgl(cos φ1 + 1) −
∫ φ2

φ1

τdφ =

1
2
Mφ̇2

2 +
1
2
mvc

T vc + mgl(cos φ2 + 1) (42)

where τ = τ(φ) is the torsional friction at the pivot point.
From (42) and withφ2 = π we acquire

φ̇2 =

√

φ̇2
1 +

2mgl

M
(cos φ0 + 1) −

∫ φ2

φ1

τdφ (43)

The total energy change gained by the impulse force and
sudden braking isΔE = ΔE1 + ΔE2. Therefore, using
(31),(33), (40)-(43) we acquire

ΔE =
1
2
M

(

φ̇2 +
FimplΔt1

M

)2

−mgl(cos φ0+1)−
∫ φ2

φ0

τdφ

(44)
with φ̇2 given by (43). The integral component, which ex-
presses the energy loss due to friction, can be neglected as
we do not aim to reach exactly toxd but somewhere above
it. Later in the simulations we will show that this assumption
is feasible.

Demanding thatΔE of (44) will be equal to the desired
energy increaseΔEd and solving forFimp yields two solu-
tions given in (29). The solution that will provide force in the
desired direction (negative in our left half-plane case) will be
chosen. Note thatφ0 cannot be equal to 0 orπ as it will
cause the denominator of the first term in (29) to be zero and
would demand a non-physical impulseforce.

Theorem 1 provides us with the essential impulsive force
Fimp to increase the OPM’s energy above the desired angle.
Once it reaches this level, the cLQR can be initialized. As
mentioned, the impulse forceFimp does not take the energy
loss due to friction into consideration. That is, in a frictionless
system this force will bring the OPM exactly to the desired
angle. However, as described in Section II-C, the gripper
applies force to maintain friction in order to prevent linear
slippage of the pivot. Hence, energy loss exists. Nevertheless,
the swing-up phase aims to bring the OPM above the desired
angleφd. Thus, in theory we can set the swing-up goal angle
φsu = θsu + ψ anywhere aboveφd. But this should be done
carefully as an angle close toφd might not be reached due to
the friction loss. And an angle too large might reach over the
upright angleφ = 0 and diverge to the other side. Therefore,
we set the swing-up angle to be at the middle such that
φsu = φd

2 . Moreover,φd must be large enough forφsu to
be far enough from these boundaries. Thus, the pitch angle
ψ must be chosen such that

|φd| > ξ (45)

where ξ > 0 is a user-defined value. As we decreaseξ,

the required additional energyEsu
d − Ed to reach above

the desired angle toφsu decreases as well. Thus, there is
a minimum limit where beneath it the frictional loss exceeds
this additional energy and the OPM would not even reachφd.
In the simulation section we propose a suitable value forξ.

The selection of the pitch angle should minimize the im-
pulse forceFimp required for swing-up toφsu. Minimization
of Fimp is essential to achieve low gripper accelerations
and joint torques, and reduce the risk of linear slippage. By
assuming that the pitch angle at the left half-plane side case
is limited to 0 ≤ ψ ≤ π, Figure 6 presents the impulse force
given by (29) with regard to the pitch angle for several initial
angles. It can be seen that the minimum impulse force is
acquired near the pitch boundaries. Thus, the minimization
would select an impulse force as close as possible to these
boundaries based on the following optimization problem:

minimize
ψ

|Fimp|

subject to (1) φ0 = θ0 + ψ 6= 0

(2) φ0 = θ0 + ψ 6= π

(3) |θd + ψ| > ξ (from (45))

(4) Arms kinematic and dynamic constraints.

Fig. 6. Impulse force with regard to the pitch angle for several initial angles
θ0.

The above optimization problem minimizes the impulse
force to find the optimal pitch angle subject to several
constraints. First, a pitch angle that causesφ0 = θ0 + ψ = 0
or φ0 = π should be avoided to prevent an excessively large
impulse force. Second, criterion (45) must be enforced to
ensure swing-up above the desired angle. Last, the kinematic
and dynamic constraints of the arm define a feasible range for
the pitch angle. However, because the arm’s motion planning
is not considered in this paper, we leave the choice forψ as
user-defined and engage this problem in future work.
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IV. SIMULATIONS AND EXPERIMENTS

In this section we present simulations and experiments
conducted to validate the proposed swing-up regrasping ap-
proach. However, to use feasible and realistic torsional friction
coefficients in the simulations and experiments, appropriate
measurements were conducted and are first presented.

A. Friction coefficients measurements

Before performing simulations and experiments to validate
the proposed method, feasible frictional coefficients are re-
quired for the model. However, we did not find documentation
in literature for torsional friction values. Moreover, we need
to select feasible coefficients that will provide high tangent
friction but rather low torsional friction, a property that will
require relatively low normal forces applied to the object.
Therefore, measurements were conducted on two 3D printed
semi-sphere fingertips made of different materials. The first
material was a rubber-like polymer1 shown on the right of
Figure 7a tested on a PVC surface. The second material
is a rigid polymer2 shown left in Figure 7a. This material
was designated to slide on an aluminum surface. To measure
the frictional coefficients of the materials we performed an
experiment. Each fingertip was mounted on a 6-axis ATI
Force/Torque transducer (Figure 7b). First, to measure the
torsional friction coefficient, the fingertip was twisted against
the surface with different normal forces while measuring the
torque around the rotational axis. To measure the tangential
friction, the tangential forces were measured while sliding
the fingertip along the surface with different normal forces.
The results for the first material are shown in Figure 8
with a linear fit and a slope yielding a torsional friction
coefficient ofν = 0.0014. The tangential friction coefficient
for the first material was measured to beμ = 0.79. For the
second material, the torsional coefficient was measured to be
ν = 0.00047 while the tangential coefficient isμ = 0.36.
These are dynamic coefficients measured during sliding of
the fingertips.

(a) (b)

Fig. 7. (a) Semi-sphere finger-tips used for friction coefficient measurement
and the (b) friction measurement between the fingertip and surface with the
ATI Nano25 F/T transducer.

1PolyJet rubber-like materials supplied by Stratasysr.
2Verogray25 DM-8110 supplied by Stratasysr.

Fig. 8. Torsional friction measurement for the rubber-like material.

B. Simulations

To validate the above method we performed simulations
with a six degrees of freedom (DOF) robotic arm. However,
due to the planar nature of the method, only three DOF of the
arm are needed. The aim of the presented simulation is to re-
grasp a bottle with the given properties: massm = 0.313 kg,
inertia I = 1.256 ∙ 10−3 kg ∙ m2, length L = 0.114 m,
and COM l = 0.057 m. The bottle is initially grasped at
relative angleθ0 = 60o and it is required to regrasp it at
angleθd = −65o.

Recall that due to the frictional energy loss, we define
a swing-up goal angleφsu equal to half of the original
goal angle, which is constrained to be|φd| > ξ. Based on
the measured friction coefficients, simulations have shown
that in order to reach aboveφd, the limit angleξ must be
at least40o. Therefore, we choose the pitch angle to be
ψ = 115o, yielding the swing-up goal angle ofφsu = 25o.
Choosing a small impulse time intervalΔt1 = 0.015 s
provides an impulse force ofFimp = −22.8 N applied by
the gripper at the pivot point. For the cLQR control we select
Q = diag([1 0.1]T ) andR = 1, resulting in a control gains
vectorK = (1.12 0.32)T . In addition, safety factorα used
in (17) to calculate the minimum normal force to be applied
by the gripper is chosen, in this case, to be 1.

Snapshots of this motion are shown in Figure 9. After
applying impulseFimp, while the gripper maintains constant
velocity, the bottle will swing towards the arm until it
momentarily stops to reverse its swinging direction to swing
downwards freely. Once the angle reachesφ = 180o at time
tb = 0.39 s, the gripper is instantly braked to increase the
OPM’s energy. Once the angle crossesφd and reaches zero
velocity at timetc = 0.67 s, the cLQR is initiated to stabilize
the angle atφd. In this case, the zero velocity is reached after
crossing the GAS-ROA line defined by (27). Therefore, the
LQR controller (24) is instantly applied to bring the OPM to
φd with zero velocity.

The phase-plane, angle and energy responses are seen in
Figures 10, 11 and 12, respectively. Notice that the OPM
does not reachφsu or its corresponding energy due to the
frictional loss between the impulse and the braking. The
acceleration and normal force inputs are shown in Figures
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13a and 13b, respectively. The impulse and brake peaks can
be seen in both figures. However, the acceleration is zero after
the braking because the gripper is stationary and the normal
force converges to the force required to hold the OPM at the
desired angle1ν |τd|.

θ0 = 60o

Fimp vc

vc

φ = π

gripper brake
vc = 0

initiate cLQR

φ̇ = 0

cLQR θd = −65o

Fig. 9. Simulation of the swing-up motion fromθ0 = 60o to θd = −65o.

Fig. 10. Phase plane diagram of the swing-up motion around the goal state.

Snapshots of another example of the the swing-up motion
can be seen in Figure 14. Here the goal is to regrasp the bottle
from angleθo = 45o to θd = −140o. The angle response can
be seen in Figure 15. In this case, the cLQR is initiated at
time tc = 0.74 s only when it reachesφsu. However, this

Fig. 11. The OPM’s angle response wto regrasp fromθ0 = 60o to θd =
−65o. The solid curve indicates the angle relative to the gripper while the
dashed curve is the angle relative to the vertical.

Fig. 12. The OPM’s energy response during swing-up regrasping.

is not essential. Once the bottle passes theφ = 0 at time
t = 0.69 s, condition (25) is satisfied and controller (28)
could then be initiated. The phase-plane diagram around the
goal angle can be seen in Figure 16. Note that in this case,
the cLQR is initiated at the right half-plane and therefore we
requireτ∗ > 0.

C. Experiments

To validate the impulse based swing-up method proposed
with the notion of a semi-active joint controlled by normal
force and the cLQR approach, we have designed a swinging
rod experiment. We used the 6-DOF Robotis Manipulator-
H composed of six Dynamixel-Pro actuators. In addition, a
two-jaw gripper was built as seen in Figure 17. The gripper
was built using two parallel MX-106R Dynamixel actuators
(also by Robotis). These actuators were chosen due to their
ability to receive torque commands and therefore apply the
desired normal forces on the swinging object. Both the arm
and gripper were controlled using Robot Operating System
(ROS).

Each jaw of the gripper is composed of a metal plate and
a 3D-printed fingertip mounted at its distal end. To prevent
the swinging rod from colliding with the arm, the plates
were mounted with an angle of45o relative to the actuators.
Nonetheless, angleθ is measured relative to link 6 of the arm
and not to the plates. In addition, the fingers are fixed such
that when the jaws are set parallel to each other, the facets
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Fig. 13. The inputs to the OPM system: (a) acceleration intensity to the
pivot, and (b) the normal force exerted on the OPM by the gripper.

Fig. 14. Simulation of the swing-up motion fromθ0 = 45o to θd = −140o.

of the fingers are parallel as well and the distance between
them can be varied using screws.

The swinging object was selected to be an aluminum rod
with properties: massm = 0.028 kg, inertia I = 0.32 ∙
10−3 kg ∙m2, lengthL = 0.185 m, and COMl = 0.0925 m.
The coefficients of friction between the printed fingers and
rod are the ones measured in Section IV-A:ν = 0.00047 and
μ = 0.36. To measure the angle of the rod in real-time, a
camera was mounted perpendicular to the plane of motionh.
The angle was measured in real-time and the angular velocity

Fig. 15. The OPM’s angle response to regrasp fromθ0 = 45o to θd =
−140o. The solid curve indicates the angle relative to the gripper while the
dashed curve is the angle relative to the vertical.

Fig. 16. Phase plane diagram of the regrasp fromθ0 = 45o to θd = −140o

around the goal state. Note that the cLQR could already be initiated once
the object crosses theφ = 0o (θ = −105o) line from where condition (25)
is satisfied.

was calculated by backward finite difference of second order
accuracy.

In the presented experiment, the rod was to be regrasped
from initial angle θo = 76.5o. The goal angle in this
example is chosen to beθd = 40o. Choosing a small impulse

Fig. 17. The experimental setup of a robotic arm, gripper and object to be
regrasped through the fingertips semi-active joint.



IEEE TRANSACTIONS ON ROBOTICS, VOL. ??, NO. ??, ?????? 20?? 12

time interval Δt1 = 0.01 s provides an impulse force of
Fimp = 3.28 N applied by the gripper at the pivot point. The
cLQR controller was implemented withQ = diag([1 0.1]T )
and R = 1 which resulted in the control gains vector
K = (0.86 0.32)T . Note that in the experimental setup, the
pitch angle is set toψ = 100o. The safety factorα to control
the minimum normal force to be applied by the gripper is
chosen to be 1.3. Snapshots of one test run can be seen in
Figure 18 and the angle response is shown in Figure 19. It
should be noted that due to noisy signal readings from the
camera and dynamixels, a simple mean filter was applied for
noise reduction.

In high velocities, the synchronization between the arm’s
actuators performed poorly and therefore the gripper did
not move solely on thexp-axis. Thus, the gripper’s motion
along theyp-axis exerted undesired torques to the rod and
reduced its kinetic energy. Nevertheless, the requirement
for the swing-up phase to reach above the desired angle
compensated for the energy loss and the rod was able to
successfully complete the manipulation.

The rod reached near the desired angle at38.54o. During
the experiments, the grippers actuators were found to exert
inaccurate torques. Therefore, the error of1.46o or 4% is due
to the gripper’s inability to accurately provide the desired
normal forces to the rod. Nevertheless, such a small error is
minor. The results of the experiments validate the approach
and show that it is indeed feasible to perform swing-up
regrasping using impulse and cLQR control.

V. CONCLUSIONS

In this paper we have presented the swing-up regrasping
problem and proposed a novel approach to performing it. The
approach incorporated a swing-up phase using an impulse-
momentum method following a stabilization phase with a
cLQR controller to control the semi-active friction joint. In
that way the object was swung-up above the goal angle and
then brought to the goal in a controlled manner by apply-
ing growing normal force. Simulations on a six DOF arm
regrasping a bottle were presented to validate the proposed
approaches. Moreover, we have shown an experiment fully
demonstrating the method.

Future work will involve incorporating the motion plan-
ning of the arm for optimization of the pitch angle and
the limit angleξ. Accelerations due to the impulses should
be minimized to reduce joint torques. More importantly,
estimation methods should be examined to reduce the state
feedback dependency and partially approximate the objects
state. Moreover, our proposed approach is model based. The
human hand does not know in advance the dynamic properties
of the manipulated object but manages to approximate them
right before performing a successful manipulation. A model
identification method or an adaptive control can be applied
to approximate the object’s dynamic properties in real time.

Fig. 18. Snapshots of the experiments. Between times 0s and 1.19s, the
object is swung-up fromθo = 76.5o to above the desired angle. Then, the
object is controlled by the cLQR and repositioned atθ = 38.54o while
required to reachθd = 40o.

Fig. 19. An experimental result of the rod’s angle response.
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