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Abstract

Almost any task on an object requires regrasping of the object prior to performing an intended task by varying
between grasp configurations. The human hand uses many methods to perform regrasping manipulations such as
in-hand sliding, finger gaiting, juggling, picking and placing, etc. The most complex and inspiring approach is the
in-hand orienting dynamic regrasping where an object is released into mid air and regrasped in a different orientation.
This manipulation is useful in industrial robotics for rapid manufacturing and reducing the number of robotic arms
in production lines. In this work, we present a novel approach for performing in-hand orienting regrasping using
computed torque control. To maintain an efficient and low-cost approach, the regrasping is performed using a non-
dexterous two-jaw gripper and by utilizing the robotic arm’s dynamics. We focus on the motion planning for the
motion and propose a novel stochastic algorithm for performing an optimal manipulation satisfying the kinematic
and dynamic constraints. The algorithm optimizes the initial pose of the arm and the control gains. Statistical
analysis shows the probability for the algorithm to find a solution if such exists. Simulations on a KUKA arm and
demonstration on a planar 3R arm validate the feasibility of the proposed regrasping approach and planning algorithm.
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1. Introduction

When the human hand holds an object with a grasp not compatible with the task to be done, it performs Re-
grasping. In other words, the hand executes a set of manipulations backed by eye feedback to alternate the grasp
configuration with respect to the intended task (Figure 1). The regrasping manipulations of humans have encouraged
many robotic researchers to take inspiration for different regrasping motions and mimic them using dexterous robotic5

arms and hands. The ability of robots to perform regrasping tasks enhances their capabilities and dexterity. The
main impact of regrasping manipulations is in industrial applications. For instance, current production lines utilize
numerous robotic arms, each with an end-effector especially designed for grasping a specific part and to perform
one designated task. This makes the end-effectors inflexible in handling variations in component shape or in task.
Using an efficient regrasping method, the same arm can perform multiple operations on the same part and by that10

decrease the number of robotic arms in the plant. However, current regrasping methodologies work only with highly
redundant (and hence expensive) hand architectures, and require agile sensory feedback, thus, not fitted for industrial
applications.

In this paper, we present a novel motion planning approach to perform a rapid and optimal dynamic regrasp
manipulation with a robotic arm and a non-dexterous simple gripper. Such approach would enable industrial prac-15

titioners to use existing robotic arms in the plant and low-cost grippers for performing multiple tasks on the same
part. By that, the number of required robotic arms in the plant would be reduced, as well as the gripper design and
manufacturing time, and at the end reduce the final product cost. In terms of robotic manipulation, the problem
introduced in this paper and the proposed algorithm will increase the dexterity of any robotic arm and will expand
its library of motions. Our long-term goal is to build a library of basic dynamic regrasping manipulations that will20

∗Corresponding author: Avishai Sintov, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva
84105, Israel, E-mail sintova@post.bgu.ac.il, Tel +972-54-5562555.



HandRegrasp1.png HandRegrasp2.png HandRegrasp3.png HandRegrasp4.png

HandRegrasp5.png HandRegrasp6.png HandRegrasp7.png HandRegrasp8.png

Figure 1: Snapshots of a human hand performing in-hand orienting dynamic regrasping on a TV remote control.

serve as building blocks for higher task executions to be performed by autonomous robots.
Previous work on regrasping used quasi-static motions and high dexterity manipulations. The alternative of dy-

namic regrasping using a single robot arm with a non-dexterous end-effector offers an attractive solution in terms of
cost as well as task completion time. In this research, we focus on a simple robotic system that will perform transition
between two or more grasps of an object. As mentioned, we focus on non-dexterous two-jaw grippers. That is, the25

gripper would only have a minimal number of primitive degrees of freedom (DOF) to only fixture the object after the
manipulation is finished, e.g., a jaw gripper, a clamp, etc. Hence, we rely on the dynamics of the arm rather than
on a highly dexterous hand or, as defined by [1], we use extrinsic dexterity. It should be noted that in this work we
do not deal with regrasp synthesis of where on the object’s surface to grasp while maintaining a force-closure grasp,
as done by [2] and [3]. The idea of the regrasping problem in our context is grasping with a very simple gripper and30

regrasping by means of changing the relative position and orientation between the object and gripper.
The dynamic regrasping strategy for which we propose a motion planning algorithm in this paper is termed in-

hand Orienting. The object is released into mid-air after opening the gripper. The robotic arm will then move the
gripper in tandem with the falling object, but without disturbing the object. When the gripper reaches a new desired
orientation relative to the object, its jaws will capture the object by closing around it. It should be mentioned that the35

capturing is done with matched velocities between the object and gripper for soft catch to prevent undesired shocks
to the object. We use a novel Stochastic KInodynamic Planning (SKIP) algorithm for planning and optimizing the
motion. A preliminary version of the algorithm was first introduced in [4] for object throwing where polynomial
trajectories were optimized. In contrast, in this work we use a modified version of the algorithm to optimize the
initial state of releasing the object and provide a profound analysis. Optimizing the state of releasing the object is40

essential to enable a feasible motion and can reduce joint torques and motion time. The algorithm parameterizes the
proposed motion of the arm and object, including the control gains and the initial state of the system from where to
release the object. To our knowledge, no optimal control or trajectory optimization methods can find a solution while
choosing the best initial state of the system. Other methods such as sampling-based planners [5] plan the motion
from a given initial state. The parameterized motion is the input of the SKIP algorithm, which outputs the optimal45

solution (based on a given cost function) satisfying the kinodynamic constraints of the problem. The algorithm is
based on the use of the Computed Torque (CT) control and its response on the arm. The CT control enables good
prediction of the motion which is essential for the implementation of the planning algorithm. Due to the fact that the
CT control is model based, we perform model identification for approximating the dynamic parameters of the robotic
arm. The proposed planning and control scheme is presented in Figure 2.50

In this work we focus on the motion planning problem for performing the proposed regrasping strategy. Neverthe-
less, we choose a control method that will enable the planning approach. However, we acknowledge that additional
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work must be done before regrasping of this type can be implemented in industrial applications. In particular, we do
not discuss the visual feedback and estimation problem necessary for a robust manipulation. We assume full knowl-
edge of the object pose at all times and leave the tracking problem beyond the scope of this paper. However, we will55

provide further discussion about future requirements regarding this in the conclusions section. It is also important
to note that the regrasping manipulation is done in a priori known environment. This is a reasonable assumption for
industrial applications where the robots are isolated and monitored. Thus, off-line planning is feasible.

The paper is organized as follows. In Section 2 we present related work on regrasping and dynamic manipulations.
Section 3 is the formal regrasping problem definition. In Section 4 we present the CT control. The parameterization,60

constraint formulation, and SKIP algorithm are presented in Section 5. In Section 6 we present performance analysis
and complexity of the algorithm. Simulations and experiments are presented in Section 7. Finally, we conclude the
algorithm and results in Section 8.

2. Related work

This paper discusses a dynamic manipulation approach for performing the regrasping motion of a human hand for65

future industrial implementations such as assembly tasks. Let us first describe the two regrasping approaches taken
by industrial practitioners. The first approach is the common pick and place method that designates a special work
area near each robotic arm, where the grasped workpiece can be dropped in a controlled manner, then picked up
again at a new grasp configuration [6, 7, 8]. Alternatively, some high-end industrial practitioners resort to unthreading
the regrasping task by placing several (hugely expensive) robot arms along a long production or assembly line, each70

picking a moving workpiece at a new grasp configuration [9, 10]. While both regrasping methods work nicely in
practice, they consume valuable production time, occupy a substantial work area, and are highly expensive when
multiple robot arms are being used.

In the robotics literature, there are four known approaches for regrasping (excluding picking and placing); First,
the use of the gripper’s DOF to move between contact points while maintaining a force-closure grasp during the75

entire process [2, 11, 12, 13, 14, 15, 16]. This approach is also called quasi-static finger gaiting in the robotics
literature. However, quasi-static finger gaiting is quite wasteful, as it requires sufficiently many DOFs (requiring highly
redundant finger linkages) to manipulate the grasped object between two grasp configurations while maintaining force
closure grasps. Most of the finger gaiting algorithms use at least another extra finger that can be lifted at each step
[17, 18, 19, 20]. Such motion results in a slow quasi-static manipulation, maintaining a state of constant contact80

with the object. This has an analogy to gait, where advancement is done only with one leg lifted at a time (when
dynamic forces are not taken into consideration) so that the other legs can maintain balance. Such a process can take
a valuable amount of time.

Alternatively, it has been recently suggested that a dual arm robot may be more suitable for object regrasping
operations [21, 22]. While dual arms is a promising approach, it has two significant drawbacks. First, regrasping85

an object with two cooperating arms requires highly dexterous manipulation capabilities from both arms. Second,
a dual-arm system is costly and occupies a fairly large work volume. The third approach is sliding the fingertips on
the object’s surface without losing contact, to reposition them at new contact points [23, 24]. This approach has not
been widely investigated and has low feasibility due to the risks of scratches and dents on the object. Moreover, the
approach also needs sufficient DOFs to develop trajectories on the object’s surface.90

The fourth approach is much faster and more efficient, however more complex, as it uses dynamical manipulations
to switch between grasp configurations. In dynamic manipulation, the robots motion is quick and there is no need
for constant contact. The end-effector loses contact (fully or partly) with the object after releasing it in the air and
regains contact by catching it at the final contact points. Such a method has advantages in fast operation. However,
most work done in this field used a multi-fingered highly dexterous hand for performing regrasping. [25] proposed a95

regrasping strategy based on visual feedback of the manipulated object, this with a multi-fingered hand. The work in
[26] introduced a regrasping method using a 3-finger hand with no external sensing for feedback. A work that combines
the notion of dynamic and sliding regrasping was presented in [27], where a robotic arm’s motion is planned to create
in-hand sliding motion of a pinched object. Our first work on non-dexterous dynamic regrasping was published in
[28, 29]. There, we introduced the swing-up regrasping problem to alternate the relative angle between the object and100

hand around a point pinched by a simple jaw gripper using the dynamics of the hand and controlling the pinching
force.

There is related work to dynamic regrasping in the field of dynamic manipulations [30, 31]. Dynamic manipulation



of an object enables the change of its position and orientation by tossing, pushing, or hitting it. Lynch et al. [32, 33]
developed a low degree of freedom robot to perform complex manipulations using rolling, sliding, and free-flight, this105

with no grasping (non-prehensile manipulation). Tabata and Aiyama [34] used a one degree of freedom manipulator
to toss an object to a goal position. The work in [35] was done to mimic the manipulation done with a pizza peel.
The research states that the pizza peel is controlled with only two DOF and utilizes vision control. Much work has
also been done in pushing manipulations where the object is pushed on a desired trajectory to re-position or re-orient
it [36, 37, 38]. Moreover, some performed manipulation of the grasped objects by dynamic manipulations between110

fingertips [39, 40].

3. Problem Definition

In this section we describe the system and its constraints, lay out our assumptions, and formulate the problem and
its goal. Note that the problem is defined for the spatial problem but can be easily degraded to the planar problem
without loss of generality.115

3.1. Given system

Let Q ⊆ Rn and U ⊆ Rn be the configuration space and the set of all possible torque or force inputs, respectively,
of an n DOF robotic arm. The robotic arm is equipped with a simple non-dexterous jaw-gripper end-effector. We
deal with objects such that their bounding sphere is of the same scale as the gripper. That is, the gripper is able to
orient freely around the object. The world coordinate frame (CF) O is located at the base of the manipulator. The
dynamic motion equations of the manipulator in the configuration space can be written as

M(Φ)Φ̈ + C(Φ, Φ̇)Φ̇ +G(Φ) + Γ = u (1)

where Φ(t) = (φ1(t), · · · , φn(t))T ∈ Q is the configuration vector of the arm at time t, M is the n× n inertia matrix,
C the n × n matrix of centrifugal and Coriolis acceleration terms, G is the n × 1 vector of gravitational effects, and
u(t) ∈ U is a vector of control input torques to the joints. Γ is the n× 1 vector of joints’ frictional torques given by

Γi = fcisgn(φ̇i) + fvi φ̇i, i = 1, ..., n (2)

where fci and fvi are the coulomb and viscous coefficients of friction, respectively, of joint i.
Next, we define the notion of the Pose related to an object’s position and orientation.

Definition 1. A generalization vector p combining Cartesian position and spatial orientation of an object is called a
Pose such that p ∈ T where T ⊆ R3 × S3 is the robots task space.120

According to Definition 1, we denote pg(t) ∈ T to be the pose of the gripper at time t. That is, pg =
(xg yg zg ϕg θg ψg)

T is a generalization vector of the gripper’s position, (xg, yg, zg) ∈ R3, and its orientation
(ϕg, θg, ψg) ∈ S3 with respect to reference frame O. Angles ϕg, θg, and ψg are the roll, pitch, and yaw angles
(Euler angles) of the gripper, respectively. In addition, we define Xg as a fixed CF at the center of the gripper.

Based on arm limitations, we impose several constraints. The allowed subset of control input torques is given
by Ual ⊂ U . Furthermore, the arms’ joints are limited within a certain range of motion due to mechanical bounds,
operational demands, or obstacles in the workspace such as a table or a wall. Meaning, the configuration space of the
arm is constrained to be within Qfree ⊆ Q through the whole motion. Constraints can also be formulated in the task
space as Tfree ⊆ T . However, for simplicity they are included in the configuration space constraints using inverse
kinematics as will be defined later.

Given object B with mass m and CF Xo fixed at its center of mass. We denote the object’s configuration in the
task space by po = (xo yo zo ϕo θo ψo)

T ∈ T . Hence, we describe its configuration by its position (xo, yo, zo) and
orientation (ϕo, θo, ψo) in Euler angles relative to O. After neglecting air resistance, the equation of motion of the
object, while in free-flight, is given by

p̈o = g (3)

where g =
(
0 0 −g 0 0 0

)T
is the gravitational vector operating on the object. We note that it is assumed

that the state (pose and pose velocity) of object B is fully known. That is, feedback of po(t) is acquired at all times as
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well as ṗo(t). This feedback can be acquired by cameras or motion capture systems. However, sensing and estimation
are beyond the scope of the paper.

Next, we define the relative pose between the gripper and object.125

Definition 2. The relative pose between the gripper and object B is defined to be

p(t) = pg(t)− po(t) (4)

and the relative pose velocity is
ṗ(t) = ṗg(t)− ṗo(t) (5)

where ṗg and ṗo are the pose velocities of the gripper and object, respectively.

At time t = 0, since the gripper is stationary and holds the object, they are located at the same position and at rest.
Moreover, we define the initial grasp posture to be the zero orientation between the gripper and object. Therefore,
they have equal poses pg(0) = po(0) and zero velocities ṗg(0) = ṗo(0) = 0, or according to the terminology in
Definition 2, their initial relative pose is p(0) = 0 with initial relative pose velocity ṗ(0) = 0.130

3.2. Manipulation Goal

Object B is held by the gripper of system (1) with relative pose p(0) = 0, i.e., CFs’ Xg and Xo are coincident.
Let ω̂o = (ωox ωoy ωoz )

T be a unit vector in Xo and let α ∈ S be the desired rotation angle about ω̂o (Figure 3). It
is required for the regrasping manipulation to grasp the object at the final time tf such that Xg is rotated relative to
Xo about ω̂o with angle α. Following, we develop a formal definition. First, we define a rotation matrix for a spatial135

object relative to coordinate frame O.

Definition 3. Given: an arbitrary object C rotated relative to coordinate frame O by the Euler angles ϕ, θ, and ψ
about the x, y, and z axes of frame O, respectively. Let matrix RC ∈ SO(3) be the map RC : R3 → R3 from object C’s
CF to CF O such that

RC = Rz(ψ)Ry(θ)Rx(ϕ) (6)

where Ri, i = x, y, z is a rotation matrix about the i-axis of O.

By neglecting air resistance we can say that a falling arbitrary object C with no initial angular velocity will maintain
its orientation and therefore has a constant rotation matrix RC . The following proposition defines the required relative
pose based on the desired rotation angle α about the unit vector ω̂o.140

Proposition 1. Given coincident coordinate frames Xo and Xg at time t = 0, necessarily means that p(0) = 0. If
at time tf , Xg is rotated about ω̂o ∈ Xo with angle α, there exists a vector ζ = (ζx ζy ζz ζϕ ζθ ζψ)T ∈ T such that
p(tf ) = ζ.

Proof. The following is a constructive proof in which we develop the specific formula for the relative position and
orientation ζ between the object the gripper. In case of relative translation between Xg and Xo, the Cartesian
coordinates in p(tf ) are equal to

xg(tf )− xo(tf ) = ζx, yg(tf )− yo(tf ) = ζy, and zg(tf )− zo(tf ) = ζz, (7)

where ζx, ζy, and ζz are the desired translation constants. The rotation of Xg relative to Xo about ω̂o with angle α
is given by the Rodrigues rotation formula [41]:

Q = I +W sinα+W 2(1− cosα) (8)

where I is a 3 × 3 identity matrix and W is the skew-symmetric matrix representation. Hence, the rotation matrix
mapping the rotated Xg to CF O is given by R = RBQ. From the rotation matrix R we can extract the desired roll,
pitch, and yaw angles of the gripper to satisfy the α rotation angle demand byϕg(tf )

θg(tf )
ψg(tf )

 =

 tan−1 (r32/r33)

tan−1
(
−r31/

√
r2
32 + r2

33)
)

tan−1 (r21/r11)

 (9)
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where rij is a component of matrix R at row i and column j. The use of function atan2 is preferred in this case to
acquire appropriate signs. According to (9) and Definition 2, the rotational coordinates in p(tf ) are

ϕg(tf )− ϕo = ζϕ, θg(tf )− θo = ζθ, ψg(tf )− ψo = ζψ . (10)

Thus, there exists a vector ζ that is the required relative pose to satisfy the rotation about ω̂o with angle α at time
tf and is given according to (7) and (10) by

p(tf ) = pg(tf )− po(tf ) = ζ = (ζx ζy ζz ζϕ ζθ ζψ)
T
. (11)

The desired relative translation ζy in the y direction cannot be unequal to zero in a symmetric gripper but is
parameterized to preserve the generality of the formulation. The other two, ζx and ζz, can be used for longitude
regrasping, that is, regrasp along the object.

The regrasping manipulation should therefore bring the object to the desired relative pose ζ with zero relative
pose velocity. Formally, the regrasping problem is to perform an optimal manipulation motion such that at some
finite time tf = (0,∞) the following conditions

‖p− ζ‖ ≤ ε, ‖ṗ‖ < ε1 (12)

will be satisfied while satisfying Φ(t) ∈ Qfree and u(t) ∈ Ual and where ε, ε1 > 0 are predefined convergence tolerances.145

An optimal manipulation is the one forming a feasible motion by satisfying the constraints such that the relative pose
goal is reached and a given cost function C(Φ,u) is minimized.

4. Computed Torque Control

In this work, we have outlined the in-hand spinning approach for the regrasping problem. In such an approach,
the gripper lets go of the object but follows its position while changing its relative orientation. That is, the object150

remains within the gripper thorough the free-fall but with no direct contact. The gripper tracks the position of the
object and therefore gripper-object collision is prevented. Their relative orientation changes during the fall until the
desired relative pose is reached and the gripper regains contact. After releasing the object, the problem is basically
an interception problem where the gripper follows the motion of the free-falling object. The problem is approached in
this work with the use of the Computed Torque (CT) Control [42], which is presented in this section. The CT control155

is a model-based control scheme that can be a disadvantage when the arm’s dynamic model is not fully known. We
address this problem by using a model identification method. Nevertheless, we choose to use the CT control due
to its great advantages for further motion planning where the system’s behavior can be predicted, i.e., an analytical
expression of the controlled system’s trajectory can be easily acquired. The motion planning problem of the regrasping
will be addressed later after reviewing the CT control.160

4.1. The computed torque control law

Given the dynamics of the robotic arm in (1), the CT control scheme applied to the system is expressed as follows:

u = M̃
(
Kp(Φ̌−Φ) +Kd(

˙̌Φ− Φ̇) + ¨̌Φ
)

+ C̃Φ̇ + G̃+ Γ̃ (13)

where M̃, C̃, G̃, Γ̃ indicate estimated values of M,C,G,Γ, respectively; Φ̌, ˙̌Φ, ¨̌Φ are the desired configuration, velocity,
and acceleration of the manipulator’s joints; and Kp = diag(kp1 · · · kpn) and Kd = diag(kd1 · · · kdn) are proportional
and derivative diagonal gain matrices, respectively. Applying the control scheme of (13) to the dynamic system of (1)
and assuming that the robot’s model is fully known, i.e., (̃·) = (·), the closed loop system is reduced to the following
linear form

ë +Kdė +Kpe = 0 (14)



where e = Φ̌ −Φ denotes the joint angles error. Equation (14) is a set of second order linear differential equations
with constant coefficients. The general solution of the system in (14) is of the form

ei(t) = c1e
−ξiωni t + c2te

−ξiωni t, i = 1, ..., n, (15)

where ωni is the natural frequency and ξi is the damping ratio of the controlled joint i. The closed loop system
solution is a damped harmonic oscillator where

kpi = ω2
ni ⇒ ωni =

√
kpi (16)

and

kdi = 2ξiωni ⇒ ξi =
kdi

2
√
kpi

. (17)

To prevent overshooting the desired state and to acquire a rapid response, we demand critical damping of the system.
That is, we demand ξi = 1, ∀i = 1, ..., n. Therefore, the following constraint for the gains must be satisfied

kdi = 2
√
kpi , i = 1, ..., n , (18)

where ξiωni =
√
kpi and the initial conditions are ei(0) = e0i and ėi(0) = ė0i . Therefore, using (15),(18) and the

initial conditions, ei(0) = e0i and ėi(0) = ė0i , the time response error of joint i is

ei(t) = e0ie
−
√
kpi t

(
1 +

√
kpit

)
+ ė0ite

−
√
kpi t . (19)

The CT controller in (13) is model based and the analysis done for approximating the error response and con-
vergence time is based on full knowledge of the model. That is, knowledge of the dynamic parameters of the system
(such as moment of inertia, mass, and center of mass position) are essential for accurate motion. Therefore, we apply
a model identification scheme presented in [43] to estimate the dynamic parameters of the manipulator performing165

the regrasping.

4.2. Interception problem

Using the above CT control scheme, we would like to formulate the free-fall phase from the time of release (t = 0)
to the time of interception (t = tf ). Through the whole phase, feedback of the object’s state, po(t) and ṗo(t), is
constantly acquired via visual feedback. The state feedback is used to calculate the desired pose p̌g(t) and pose
velocity ˙̌pg(t) of the gripper based on (12) according to

p̌g(t) = po(t) + ζ and ˙̌pg(t) = ṗo(t). (20)

Vector ζ is calculated according to Proposition 1 based on the desired rotation angle α about the unit vector ω̂o.
Constant measure of the object’s orientation and update of ζ can be done in real time during the fall. However, by
neglecting air resistance, we can say that the object with no angular velocity has constant ζ and real time update is
not necessary. We calculate the desired joint configuration Φ̌ corresponding to p̌g using

Φ̌(t) = Θ−1(p̌g(t)) (21)

where Θ : Q → T is the direct kinematics map of the manipulator from the joint’s configuration to the gripper pose
configuration. Similarly, the desired joint velocity and accelerations are calculated by

˙̌Φ(t) = J−1 ˙̌pg(t) and ¨̌Φ(t) = J−1(¨̌pg − J̇ ˙̌Φd), (22)

respectively, where J is the Jacobian matrix of the manipulator. The angles, velocity, and acceleration given by
(21)-(22) are the desired angle’s trajectory inputs to the CT controller in (13).

Since there is no initial relative velocity between the gripper and object, the initial error ė0i = 0, i = 1, . . . , n and
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therefore the angle error response of (19) is now

ei(t) = e0ie
−
√
kpi t

(
1 +

√
kpit

)
, i = 1, ..., n . (23)

From the definitions of the joint angle error and response of (23), we can extract the analytical trajectory of the
controlled joints

Φ(t) = Φ̌(t)− e(t). (24)

where e = (e1 · · · en)T and the desired joint angles Φ̌1, ..., Φ̌n at time t are calculated in (21) using real-time visual
feedback of the object’s state. The initial error vector e0 = (e01

· · · e0n)T is given according to (20)-(21) by

e0 = Θ−1(po(0) + ζ)−Φ(0) . (25)

Next, we seek to approximate the time in which the gripper and object reach the desired relative state. That is,
the time at which the goal condition of (12) is satisfied. That is, the relative pose and velocity are close enough to ζ
within a predefined tolerance. Therefore, we approximate the time tf it takes for the state error of the gripper and
object to reach within tolerance ε of the final value. From the step response of a second order system with natural
frequency ωni and damping ratio ξi [44], the desired relative state is reached approximately at time t̃f that satisfies
the condition

e−ξωn t̃f < ε . (26)

Therefore, the approximated settling time of joint i for the error to converge within tolerance ε is

t̃si = − log(ε)

ξiωni
= − log(ε)√

kpi
. (27)

The total approximated settling time of the system will be the maximum of the n values

t̃f = max
i
{t̃si} . (28)

5. Regrasp planning algorithm

The use of the CT controller allows obtaining an analytic solution (24) of the joint trajectory from release to
interception at the desired relative pose, with dependence of the object’s state acquired using visual feedback. However,170

after release, the object is at free-fall and its state could easily be approximated with (3). The motion planning to
perform the regrasping could be solved using optimal control or stochastic methods such as the RRT [5, 45]. However,
these methods are unfavorable due to the following reasons. The initial pose of the arm is the configuration from
where the object would be released. The in-hand regrasping cannot be performed from all initial configurations due
to the kinodynamic constraints. For example, setting the initial pose in some area close to the workspace boundary of175

the robot may not enable enough motion to complete the task. Moreover, some initial configurations result in better
solutions than others in terms of the cost function. For a minimal torque cost function, having the gripper start far
from the base will probably have a higher cost than starting from a closer pose. The motion also depends on the
control gains which have a direct impact on motion time and accelerations, and thus on the cost function. Hence,
the optimization problem in the context of dynamic regrasping should optimize the initial pose of the arm and the180

control gains. To our knowledge, no optimal control or trajectory optimization methods can find a solution while
choosing the best initial state of the system. Therefore, in the following section, we parameterize the free variables of
the problem: gripper initial pose and control gains, and present the algorithm for planning and optimization of the
motion.

5.1. Motion parameterization185

The free-fall motion of the object depends on its release pose. That is, releasing the object from initial pose p0 and
with zero velocity defines its uncontrollable trajectory solely under the influence of gravity. Therefore, the definition
of motion in this phase includes the initial pose at time t = 0. Moreover, the motion of the arm controlled with the



CT scheme from that time instant is given by (24). The estimated time for the gripper and the object to reach the
desired relative state, i.e., satisfaction of (12), is given by t̃f in (28). Notice that t̃f = t̃f (kp1 , . . . , kpn); that is, the190

proportional gains of the controller defines the time of interception tf with the object.
With the understanding of the parameters that define the free-fall and interception, we define the parameters

vector σ ∈ Ω where Ω ⊆ Rd and d = 6 + n. The form of the parameters vector σ is defined as follows:

σ =
(

p0
T kp1 · · · kpn

)T
. (29)

while assuming ṗ0 = 0. Parameterization vector σ defines the motion of both the arm and object after release.
Determination of σ defines the approximated trajectory and motion time of the arm according to (24) and (28) to
intercept the flying object and finally regrasp it at the desired relative pose.

After parameterization, the time responses of the arms’ joints Φ(t) given in (24) can be written as a function of
time and σ, i.e., Φ(t) = fΦ(t, σ), by replacing the initial position and control gains notations with the σ notation.
Similarly, the CT controller from (13) has the form

u(t) = fu(t, σ) = M̃(Φ)af (t, σ) + C̃(Φ, Φ̇)Φ̇ + G̃(Φ) + Γ̃ (30)

where
af (t, σ) = Kp(Φ̌−Φ) +Kd(

˙̌Φ− Φ̇) + ¨̌Φ , (31)

Φ̌, ˙̌Φ and ¨̌Φ are calculated according to (20)-(22) while measuring the object’s state along its free-fall. The term in195

(30) expresses the control law with the equations of motion. In the next subsection we integrate this in the set of
kinodynamic constraints of the problem.

5.2. Motion constraints

In this subsection we formulate the constraints of the system’s motion in terms of the free parameters of the
problem, i.e., according to parameterization vector σ. We formulate the configuration space constraints defined by200

Qfree and the torque constraints imposed by Ual.
As mentioned in section 3, due to joint limitations, it is possible that not all the configuration space Q of the arm

is accessible. Therefore, we can formulate the free space Qfree explicitly as a set Λ ∈ Ra of a constraints

Λi(fΦ(t, σ)) ≤ 0, ∀i = 1, ..., a. (32)

As mentioned, the configuration constraints incorporate pose constraints such as obstacles and arm boundaries in the
workspace. The same could be done to explicitly express the set of allowed torques Ual. Usually, the allowed torques
would be bounded by

umini ≤ ui(t) ≤ umaxi , ∀i = 1, ..., n, (33)

where umaxi and umini are the upper and lower torque bounds of joint i. Therefore, in terms of t and σ, the torque
constraints are written as {

fui(t, σ)− umaxi ≤ 0
−fui(t, σ) + umini ≤ 0

, ∀i = 1, ..., n (34)

and are equivalent to (33) if both are satisfied. One constraint that is not included here is an object-gripper constraint
to prevent collision through-out the manipulation. Such constraint is not essential as the CT control and its critical
damping ensure non-collision. However, such constraint can be easily included.

The set of inequalities given in (32) and (34) could be written as

Ψi(t, σ) ≤ 0, i = 1, ..., b. (35)

Ψ(t, σ) is a set of b functions:

Ψ(t, σ) =

 Λ(fΦ(t, σ))
fu(t, σ)− umax
−fu(t, σ) + umin


b×1

(36)

where by summing the number of constraints in (32) and (34) the total number of constraints is b = a+2n. Inequality
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(35) defines a feasible region of the dynamic system in terms of time and the desired trajectory parameter σ. That is,
we obtained a set of constraints that defines a time-varying domain in Ω. Next, we present the time-varying constraint
problem and the search algorithm to find an optimal trajectory satisfying the constraints.205

5.3. Time-varying constraint (TVC) problem

In the previous section we obtained a set of inequalities depending on t and the parameter’s vector σ. Recall that
the components in σ are independent of time. Therefore, we would like to find an optimal vector σ∗ ∈ Ω that satisfies
the constraints from release to goal time tf (σ∗), and minimizes the cost function C(σ). Such an optimal vector will
sufficiently define the motion of the system under the constraints. Let Σ ⊂ Ω be the allowed region for σ defined by210

the pose boundaries of the arm and maximal possible control gains. Next, we define the notion of a feasible set.

Definition 4. A set Ωf ⊂ Ω is a feasible set if Ωf ⊆ Σ and every σ ∈ Ωf satisfies inequality (35) for all time
t ∈ [0, tf (σ)].

We now define a feasible vector.

Definition 5. A motion parameterization vector σ ∈ Ω is said to be feasible if σ ∈ Ωf .215

The above two definitions conclude that a vector is feasible if

σ = {σ ∈ Ωf |σ ∈ Σ,Ψi(t, σ) ≤ 0, ∀ t ∈ [0, tf (σ)], i = 1, ..., b} . (37)

We now face the the problem of finding the feasibility set Ωf ⊆ Σ where for all vectors within it, inequality (35) is
being met at all times. Formally, the problem is as follows.

Problem 1. (TVC) Given the set of constraints in (35) and the set Σ, find the feasibility set Ωf ⊆ Σ.

Solving the above problem provides the feasible set Ωf from which the optimal solution is to be chosen. Hence, we
define the following minimization problem.220

Problem 2. Find the vector σ∗ ∈ Ωf where Ωf ⊆ Σ such that

σ∗ = argmin
σ

C(σ)

subject to σ∗ ∈ Ωf
(38)

In other words, the above general problem is finding an optimal vector σ∗ that is feasible and minimizes some cost
function C(σ). Figure 4 illustrates the two problems. The position and volume of Ψ(t, σ) in Ω varies in time and
therefore, the solution of the problem is in a domain formed by projecting the constraints for time 0 to tf on Ω. The
intersection formed by these projections, if one exists, is the feasibility domain Ωf and from there the optimal solution
σ∗ should be chosen.225

The above problem seeks a feasibility set over a period of time. It is important to note that we seek a feasibility set
if such exists. In the next subsection we present an algorithm for finding the feasibility set and choosing an optimal
solution from it. The probability to find a solution if one exists is also presented.

5.4. Feasibility search algorithm

A search algorithm is now presented to find the set Ωf of feasible vectors. The domain formed by the set of230

constraints in inequality (35) is non-linear, non-convex, and may not be continuous. Therefore, an analytical solution
of the reachable set is only possible in rare and simple cases. We present a numerical search algorithm to find a set
of vectors satisfying the above constraints. Further, we can choose one vector from the set that best minimizes the
cost function. We begin by presenting a simple definition for normalizing the time interval.

Lemma 1. A vector σ is feasible in t ∈ [t1, t2] if the constraint Ψi(λt1 + (1−λ)t2, σ) ≤ 0 is satisfied for all 0 ≤ λ ≤ 1235

and for all i = 1, ..., z.

Proof. For each time instant t ∈ [t1, t2] there exists 0 ≤ λ ≤ 1 such that t = λt1 + (1− λ)t2. Therefore, if a vector σ
satisfies Ψi(t, σ) ≤ 0 for all i = 1, ..., z and t1 ≤ t ≤ t2, it must also satisfy Ψi(λt1 + (1−λ)t2, σ) ≤ 0 for all i = 1, ..., z
and 0 ≤ λ ≤ 1.



Lemma 1 is utilized as a criterion for determining whether a vector σ is feasible. Numerically, we check the constraint240

for times t = λt1 + (1− λ)t2 with λ = {0,∆λ1,∆λ1 + ∆λ2, ..., 1}. The value of the step ∆λj will be further defined.
Figure 5 illustrates an abstraction of the feasibility problem and the line in time defined by Lemma 1. From here on
we assume t1 = 0, t2 = tfi , and therefore t = λtfi .

The search algorithm is presented as the Search domain(·) function in Algorithm 1. The algorithm’s input is
the allowed set Σ in Ω, the set of constraints of equation (35), and the number of random points N . The basis of245

the algorithm’s operation is selecting a set of N random points within Σ and checking each for its feasibility. The
determination of N would be discussed later on. The first step is to sample N random points P = {σ1, ..., σN}
uniformly distributed in Σ. The allowed region formed by Σ is a hyper-rectangle in Ω and therefore we sample points
in each axis of Ω within the boundaries defined by Σ. Such sampling provides a Poisson distribution over the volume
of Σ [46].250

The next step is going through all the N points in P and filtering out those that are not feasible. The final time
tfi(σi) is determined for each point σi checked. Hence, we check if the constraints are satisfied for time t = λtfi
where λ = {0, λ1, λ2, ..., 1} = {0,∆λ1,∆λ1 + ∆λ2, ..., 1}. Meaning, vector Ψ(λtfi , σi) is checked to be negative for all
0 ≤ λ ≤ 1. Those that do not satisfy the constraints are eliminated and the feasible set ΩΣ ⊂ Σ with size m ≤ N
is output. However, scanning the constraint Ψ(λtfi , σi) for λ = {0,∆λ, 2∆λ, ..., 1} where ∆λ is a constant value is

Algorithm 1 Search domain(Σ,Ψ, N, εb)

Input: The allowed set Σ, set of constraints Ψ, number of points to generate N , and tolerance εb.
Output: Set of feasible points ΩΣ in Σ.

1: Generate the set P = {σ1, ..., σN} of N uniformly distributed random points within Σ.
2: Calculate Smax. // using optimization prob. in (41).
3: Initiate empty set ΩΣ.
4: for i = 1→ N do
5: if ¬(Adaptive Check(σi,Ψ, Smax, εb)) then
6: Add σi to ΩΣ.
7: end if
8: end for
9: return ΩΣ = {σ1, ..., σm} // return a set of m ≤ N feasible points.

255

rather risky. For a relatively large step size ∆λ, a value in Ψ might ascend over zero and descend below again within
the discretized step size. Moreover, too small step sizes could be unnecessary and the computational price would
include very long runtime. Therefore, we present a simple adaptive step size algorithm to fine tune the time steps
and diagnose or rule out such scenarios.

Definition 6. The constraint value of a feasible point σi at time λtfi is defined to be

Ψ̃i,λ = max
j
{Ψj(λtfi , σi)} , (39)

where Ψj is the jth component of the constraint vector Ψ.260

That is, the constraint value is the shortest distance at time λtfi from point σi to the boundary of the closest

constraint. Notice that we refer to a distance with a positive value, but the value of Ψ̃i,λ is maintained negative for
an indication that σi is a feasible point. Assume that the change rate of the constraint value with regard to λ is
bounded by

∆Ψ̃i,λ

∆λ
≤ Smax, ∀ 0 ≤ λ ≤ 1 . (40)

That is, the maximum slope of the constraint value Ψ̃i,λ is Smax. Under this assumption we can say that if at

time λtfi the constraints are satisfied, Ψ̃i,λ < 0, then the minimum time for the constraint to reach the zero line is

(λ + ∆λmin)tfi where ∆λmin = − Ψ̃i,λ
Smax

. Therefore, as we get closer to a boundary of a constraint, we decrease ∆λ
such that reaching above the zero line in that time frame is not possible. Figure 6a illustrates the selection of ∆λ as
it gets smaller when approaching the zero line and larger when receding. However, in this adaptive approach, even
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though Ψ̃i,λ might pass the zero line, the algorithm will never do so as it will continue to decrease ∆λ. Therefore,

we bound such that the algorithm will stop checking the current σi (and remove it) if 0 < Ψ̃i,λ < εb, where εb < 0
is a value that will be defined further in the algorithm’s analysis. This also serves as a safety distance, assuring the
solution is far enough from the constraint’s boundary. An example of such is shown in Figure 6b.

In order to calculate ∆λmin we must first find Smax. Thus, we differentiate the constraint vector by λ to acquire

its slope
∂Ψ(λtf ,σ)

∂λ , where tf is the maximum possible goal time based on the maximum allowed control gains given in
Σ. Smax is the maximum slope of all components over all time and can be computed by the following maximization
problem

Smax = max
λ,σ,j

Sj(λtf , σ)

subject to 0 ≤ λ ≤ 1

σ ∈ Σ

(41)

where Sj is the jth component of the constraint’s derivative S(λtf , σ) =
∂Ψ(λtf ,σ)

∂λ . This could be computed analytically
using Kuhn-Tucker conditions [47] or numerically. The adaptive step size function Adaptive Check(·) is presented in
Algorithm 2.

Algorithm 2 Adaptive Check(σi,Ψ, Smax, εb).

Input: σi, the set of constraints Ψ, slope Smax, and the tolerance εb.
Output: Boolean: 1 if σi is feasible, 0 if not feasible.

1: Set λ = 0.
2: Calculate tfi according to the control gains in σi using (28).
3: while ( λ ≤ 1 ) do
4: Calculate Ψ̃i,λ = max

j
{Ψj(λtfi , σi)}.

5: if ¬( Ψ̃i,λ > εb ) then
6: Return 0. // failed point.
7: else
8: Calculate ∆λ = − Ψ̃i,λ

Smax
.

9: λ = λ+ ∆λ.
10: end if
11: end while
12: Return 1. // feasible point.

The adaptive step size with the maximum slope Smax provides efficient sweep of the generated points by reducing
the number of checks for each point in P. However, for high-dimensional systems such adaptive search by its own can265

take a long time due to complex equations of motion of the system. Therefore, it is important to check first for the
kinematic constraints and then for the torque constraints. In that way, only candidate trajectories that passed the
kinematic constraints will be checked for the torque constraints. Experiments have shown a 90% runtime reduction
compared to a non-separated constraint check.

Algorithms 1 and 2 search for a feasible set of points in Σ. Though the search will find a solution in a given270

probability, as will be discussed later on, domain Σ is relatively large and the solutions found would be sparse. Hence,
we treat the first search of N points within Σ as a preliminary search followed by refinement and a more focused
search. The initial set Ω0 found outlines a coarse structure of the feasible region Ωf and the purpose of the focused
search is to broaden the number of solutions within that structure and optimize the solution. Therefore, the idea is
for each of the m points found in Ω0, to search in its area bounded by a small hyper-rectangle denoted as Σi as seen in275

Figure 7. The size of the hyper-rectangles is chosen heuristically to achieve a good cover by calculating the standard
deviation ς ∈ Rd of Ω0 along each axis. Function Enclosed box(σi, ς) returns the allowed search domain Σi around
point σi ∈ Ω0 such that it is a hyper-rectangle with edge lengths ςj , j = 1, ..., d.

Algorithm 3 presents the whole scheme of using the Search domain function for initial and advanced search in Σ.
The first step (Line 1) of the algorithm is to determine the number of random points N such that the probability to280

find a solution is more than a user defined probability 1−Pmax. The calculation of N based on the choice of Pmax will
be presented later in the algorithm’s analysis. Next, in Line 2 the initial feasible set Ω0 is found by calling function
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Search domain to search Σ with N random points. Next, the standard deviation of the m points in Ω0 is calculated
followed by a search around each point in Ω0 using a for-loop. In each iteration of searching around σi ∈ Ω0, the
corresponding search domain Σi is calculated and searched with N/m points yielding a total of 2N random points285

checked. For each iteration, a set Ωi of mi feasible points is outputted. Finally, the algorithm outputs the unified
set Ωf of the feasible sets found Ω0,Ω1, ...,Ωm with a total of mf =

∑m
i=0mi feasible solutions. In the experimental

section we present the contribution of Algorithm 3 to the overall performance. The algorithm dramatically increased
the number of feasible solutions but also increased the runtime.

Algorithm 3 Feasibility search(Σ,Ψ, Pmax, εb)

Input: The allowed set Σ, set of constraints Ψ, probability Pmax, and tolerance εb.
Output: Set of feasible points Ωf .

1: Calculate number of random points N according to (56), such that the probability to find a solution in Σ is more
than 1− Pmax.

2: Ω0 = Search domain(Σ,Ψ, N, εb).
3: m = length(Ω0). //Ω0 = {σ1, ..., σm}.
4: ς ← Standard deviation of Ω0.
5: for i = 1→ m do
6: Set Σi = Enclosed box(σi, ς).
7: Ωi = Search domain(Σi,Ψ,

N
m , εb).

8: end for
9: Return Ωf =

⋃m
i=0 Ωi.

5.5. Optimal solution290

The final step of the algorithm is selecting the optimal solution among the set of feasible points Ωf = {σ1, ..., σmf }
found in Algorithm 3. Given the cost function C(σ), the optimal solution σ∗ is found according to a simple naive
search. That is, we search for point σk = σ∗ ∈ Ωf that best minimizes C(σ) according to

σ∗ = arg min
σi

C(σi), i = 1, ...,Mf , (42)

where Mf = length(Ωf ). It is also possible to use a Gradient Descent (GD) method [48] to refine the solution and
find a local minimum in the neighborhood of σ∗.

5.6. Overall algorithm

The full in-hand regrasping planning algorithm is presented in Algorithm 4. The algorithm receives input of the
system’s constraints in the form of inequalities (35), the desired probability Pmax (presented in the next section),295

and the convergence tolerance εb. The algorithm computes the optimal parameterization vector σ∗. Based on the
structure of σ∗ defined in (29), the algorithm outputs the optimal initial pose p0 of the gripper and object before
release, and the gains for the CT controller.

Algorithm 4 In-hand regrasping planning algorithm

Input: Set of constraints Ψ, probability Pmax, and tolerance εb.
Output: Initial gripper pose p0 and the control gains matrix Kp.

1: Define allowed subset Σ ∈ Ω.
2: Ωf = Feasibility search(Σ,Ψ, Pmax, εb).
3: Find optimal solution σ∗ ∈ Ωf using (42).
4: Extract initial pose p0 from σ∗.
5: Extract control gains matrix Kp from σ∗.
6: Output p0 and Kp.



6. Analysis

In this section statistical and complexity analysis is performed for the proposed planning algorithm.300

6.1. Statistical analysis

A statistical analysis is performed in this subsection to calculate the probability to find a solution if it exists.
First, we define an operator that measures the volume of a set.

Definition 7. Let a map LV : Υ → R>0 such that Υ ⊂ Rd. The value of LV ◦Υ is the hyper-volume measure of Υ
according to the Lebesgue measure [49].305

Let us assume Ωf is known and let 0 ≤ ρ ≤ 1 be the relative portion of Σ that is feasible; that is, the ratio between
the hyper-volumes of Ωf and Σ:

ρ =
LV ◦ Ωf
LV ◦ Σ

. (43)

For simplification and practical usage, we will refer to Σ as a hyper-rectangle in Ω (Figure 7). Let Xj be a random
variable that takes the value 1 if σj ∈ Σ falls within Ωf and 0 if not. Thus, Xj is defined

Xj =

{
1, σj ∈ Ωf
0, σj /∈ Ωf

. (44)

Because Xj can take only two values {0, 1} and the probability of a random σj ∈ Σ to fall in Ωf is ρ, then Xj ∼
Bernoulli(ρ). Therefore, the probability for a random point σj to have a compatible random variable Xj = y is

P (Xj = y) = ρy(1− ρ)1−y for y ∈ {0, 1} . (45)

If a set of N points P = {σ1, ..., σN} ∈ Σ are independent, identically distributed random variables, and their
compatible random variables X1, ...XN are all Bernoulli distributed with success probability ρ, then the sum of the
random variables Y =

∑
Xi ∼ Binomial(N, ρ). Therefore, the probability to have k points in Ωf for N random

points (k = 0, 1, ..., N) is

P (Y = k) =

(
N
k

)
ρk(1− ρ)N−k (46)

where

(
N
k

)
is the binomial coefficient representing the number of combinations distributing k successes in N

random points. The Poisson distribution can be used as an approximation of the Binomial distribution if the number
of random points N goes to infinity (N →∞) and the Bernoulli probability is sufficiently small (ρ→ 0). Therefore,
Y ∼ Poisson(λ) where λ = Nρ. That is,

P (Y = k) ' λ
k

k!
e−λ . (47)

We determine that if a solution exists, the highest allowed probability that the solution will not be found (k = 0) out
of N random points is defined to be

P (Y = 0|ρ) = e−Nρ . (48)

In the next Theorem we show the probability to find a solution in Σ if one exists.

Theorem 1. The probability to find a solution in Σ, if one exists, approaches 1 as the number of generated random
points approaches infinity.

Proof. The probability not to find a solution in Σ is given in (48). Therefore, the probability to find a solution is

Ps(N) = P (Y > 0|ρ) = 1− e−Nρ . (49)

For a given constant and finite ρ, if we increase N to infinity, then e−Nρ → 0 and the limit for the probability is

lim
N→∞

Ps(N) = 1 . (50)
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That is, as N approaches infinity, the probability to find a solution in Σ approaches 1.

However, taking an infinite number of points is not feasible. Hence, we provide a formula for finding the number
of random points to be taken given the highest allowed probability Pmax not to find a solution. Based on (48), the
number N of random points in Σ must be chosen such that

e−Nρ ≤ Pmax . (51)

This condition states that given ρ, the number of random points to be chosen such that if a solution exists, the310

probability not to find it is lower than Pmax. That is, the probability to find a solution is higher than 1− Pmax.
The last issue that must be addressed is how to determine ρ such that (51) could be used to calculate N given

Pmax. The determination of ρ is a resolution of how close we allow the desired parameters vector to be from the
constraint’s boundaries. That is, how small do we allow the feasibility set to be in order to be considered to exist. If
the volume of the feasibility set Ωf is very small, the points within it must be very close to the constraint’s boundary.
This is an undesired situation. Such a case must be bounded so that if Ωf is too small, we would determine that a
solution does not exist. For that matter, we propose a heuristic approach of approximating a characteristic measure
of the constraints. We define a characteristic measure that is the average minimum distance from the center of the
feasible region to the constraint’s boundaries over time. The centroid of the subspace formed by the constraints in
(35) at time λitg is calculated by

σbi = argmin
σ


z∑
j=1

aj,iΨj(λitg, σ)

 , (52)

Ψj is the jth component of the constraint vector Ψ and λi = 0,∆λ, ..., β∆λ, where ∆λ is some constant step size
and β = 1/∆λ. Because each constraint in Ψ has a different gradient, which affects the distance-value ratio, it is
multiplied by its relative weight aj,i given by

aj,i =

∑z,k 6=j
k=1 Ψk(λitg, σ)∑z
k=1 Ψk(λitg, σ)

. (53)

Hence, the average distance over time (with step size ∆λtg) is given by

r =
1

β

β∑
i=1

1

z

z∑
j=1

Ψj(λitg, σbi)

 (54)

and is a characteristic measure of the constraint’s size. Heuristically, the average is computed in β time steps and
increasing β will increase the accuracy. Then, the minimum allowed volume Ωmin is defined as

LV ◦ Ωmin = (ηr)d , (55)

where 0 < η ≤ 1 is the allowed fraction of r and is user-defined. That is, we define a hyper-cube enclosed within Ωf with
edge length ηr and compute its volume to be the minimal allowed one. Thus, ρ is chosen as ρmin = (LV ◦Ωmin)/(LV ◦Σ)
or practically ρmin = (ηr)d/Vc, where Vc is the volume of hyper-rectangle Σ calculated by multiplying its edge lengths.
The minimal number of random points N for a given Pmax can be calculated according to (51) by

N ≥ −1

ρ
log(Pmax) . (56)

Moreover, the value of εb defined in section 5.4 to be the minimum allowed distance from the constraint boundary
is chosen using the characteristic measure calculated in (54) to be εb = ηr.

In the following Theorem we conclude the probability to find a solution if such exists.

Theorem 2. If a solution for the time-varying problem exists in Σ and N satisfies (56), the probability for the315

algorithm to find a solution is at least 1− Pmax.
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Proof. The probability not to find a solution if one exists is given in (48). If the algorithm selects N random points in
the allowed set Σ such that (56) is satisfied with given probability Pmax and a minimum allowed volume ratio ρmin,
then substituting it in (48) yields

P (Y = 0|ρmin) = Pmax , (57)

which is the probability not to find a solution. Hence, the probability to find a solution is 1− Pmax.

The choice of N is done ensuring finding a solution if such exists above a known probability 1−Pmax. The following
corollary extends Theorem 2 to calculate the probability to find a solution given a maximal calculation runtime Tc
and assuming the time for computing one point is known to be τc. τc is varies from one computer to another.320

Corollary 1. Given a desired calculation time Tc and the computer cycle time τc to calculate one point, the probability
to find a solution if one exists is

Ps = 1− e−
Tc
τc
ρ . (58)

Proof. The maximal number of random points that can be generated is Nc =
⌊
Tc
τc

⌋
. Therefore, given ρ and according

to (48), the probability not to find a solution is

P (Y = 0|ρ) = e−Ncρ = e−
Tc
τc
ρ . (59)

Therefore, the probability to find a solution is 1− e−
Tc
τc
ρ.

6.2. Complexity

The complexity of the proposed algorithm is presented next.

Theorem 3. Searching for a solution using N random points, the upper bound time complexity of the proposed
algorithm is in the order of O(Smaxεb

N).325

Proof. We generate N random points in Σ and therefore, the N points are to be checked for feasibility, given the
maximum constraint slope Smax and the maximum allowed boundary constraint distance εb. In the worst case, the
constraint value Ψ̃i,λ approximately equals εb for all 0 ≤ λ ≤ 1. Moreover, in the worst case, during the δS iterations,
no points will be filtered-out except in the last iteration. Therefore, each time step size will be ∆λ = εb

Smax
and the

number of time steps each σi will be checked for satisfying the constraints is 1
∆λ = Smax

εb
. Hereafter, N random points330

will be checked, in the worst case, Smax
εb

times. Thus, the upper bound time complexity of the algorithm is in the

order of O(Smaxεb
N).

7. Simulations and Experiments

In this section we present simulations and experiments of the proposed methods. Clearly illustrating a spatial
motion on paper is not an easy task. Therefore, for easy illustration of the regrasp manipulation, we first present a335

non-optimal simple motion using the CT control method. Afterwards, we test the proposed algorithm and simulate
the output optimal solution. Both simulations are conducted on a KUKA LWR iiwa 14 robotic arm. Further, we
present a regrasp demonstration conducted with a planar 3R manipulator and an object sliding on an inclined air
hockey frictionless table. Video of the simulations and demonstrations can be seen in Extension 1 enclosed to this
paper.340

7.1. Simple regrasp simulation

In this subsection we present a simple regrasp manipulation according to the method presented in Section 4. We
modeled the 7R KUKA LWR iiwa 14 robotic arm in Matlab and SimMechanics1, and can be seen in Figure 8. For
simplicity of the inverse kinematics problem, the 3rd joint is considered rigid and not used during the motion. Hence,
the arm’s DOF are as seen in Figure 8. For easier illustration, we set the goal and the initial poses of the gripper345

and object such that the manipulation would be planar. Hence, the chosen manipulation is arbitrary and was not



computed to be optimal using the SKIP algorithm.
The goal of the following simulation is to regrasp a ball in a different orientation. At the end of the manipulation,

the gripper should be rotated about the ω̂o = (0 0 1)T axis of the ball’s CF with angle α = −45o. The initial
pose of the ball and gripper are equivalent and chosen to be pg(0) = po(0) = (0.6 0 0.3 90o 90o 0o)T , yielding a350

relative pose of p(0) = 0. Assuming no rotation of the ball during free-fall, the desired relative pose according to
Proposition 1 at the final time tf would be ζ = (0 0 0 − 180o − 45o − 180o)T . We chose a control gains matrix
to be Kp = diag(1600 1600 1600 400 1600 400) yielding an approximate final time of t̃f = 0.23s. Figure 9 presents
snapshots of the regrasping motion under these terms. The change in the rotation angle α(t) about the desired vector
ω̂o is seen in Figure 10. As anticipated, approximately at time 0.23s the rotation angle reaches −45o with zero velocity355

and the gripper closes on the ball.

Table 1: Torque and angle ranges for the KUKA LWR iiwa 14.

Joint 1 2 3 4 5 6

Ang. ±170 ±120 ±120 ±170 ±120 ±175
Torq. 320 320 176 110 40 40

7.2. Regrasp planning algorithm experiments

Here we present experiments of the planning algorithm presented in Section 5. The KUKA arm described in
Subsection 7.1 is also used here. The KUKA’s joint range and maximum torques as stated by the manufacturer are
shown in Table 1. Hence, we have formulated the constraints in (35) such that the angles and torques would be in
these ranges, and the gripper would only be above the table, i.e., with positive z coordinate in CF O. By solving
the maximization problem in (41), the maximum slope is Smax = 3.18. The allowed region Σ for generating random
parameterization points was defined such that the initial pose would be within the arm’s workspace and the control
gains have an upper boundary. This forms an hyper-rectangle in Ω defined by(

0 −L −L −π −π −π
)T ≤ po ≤ ≤

(
L L L π π π

)T
(60)

0 ≤ Kpi ≤ 2000, i = 1, ..., 6 (61)

where L =
∑6
i=1 Li.

First, we conducted experimental runs while requesting rotation of α = −30o about ω̂o = (0 0 1)T with different
values for N . The initial relative pose between the gripper and ball is as seen in Figure 8. In Figure 11 the average
number of feasible solutions was found as a function of N . In blue, the number of points found in the initial run
and in yellow, the number of feasible points found in the advanced search. The contribution of the advanced search
can be clearly seen for significantly increasing the feasible number of points found. It can be seen that in this case,
about 2% of the 2N generated points were found feasible. The average computation time of this experiment can be
seen in Figure 12. It should be noted that the high runtime is due to mathematical operations on 6 × 6 matrices of
the robot’s kinematics and dynamics. Lower DOF systems take significantly less time. For example, in a three DOF
system, the computation time is around 500 milliseconds.

Next, we present a time optimal solution for rotation of the gripper about the ω̂o = (0 1 1)T /
√

2 with angle
α = −80o relative to the ball. By selecting η = 0.1 (10% of the average distance r), we obtain the relative portion
ρ = 1.38 · 10−3 and the minimum allowed distance from the constraint boundary εb = −1.01 · 10−7. Choosing a
Pmax = 0.6, i.e., 60% of not finding a solution, yields the generation of N = 3, 697 random points. We chose such a
high probability not to find a solution but to acquire lower computation time. If we fail to find solutions, we could
reduce the probability. Nevertheless, generating the N points yielded 4 solutions in the first run with a total of 432
solutions after the advanced search. The whole computation time took 9.6 minutes due to the high-dimensionality of
the arm’s dynamics. The output time for an optimal solution yielded an initial pose of

po = (0.4 0.06 0.35 − 29.55o 61.01o − 57.64o)T , (62)

1Matlab and SimMechanics are registered trademarks of Mathworks, Inc.
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control gains
Kp = diag(1, 097 742 3, 278 1, 223 1, 167 2, 751), (63)

and has an approximated goal time of t̃f = 0.23s. Snapshots of the time optimal regrasp motion can be seen in Figure
13. The response of the relative rotation angle about ω̂o is shown in Figure 14. The joint angle and torque responses
are in Figures 15 and 16, respectively. They are shown to be within their limits as defined in Table 1. In Figure 17360

the xyz coordinates of the gripper and object are illustrated in solid and dashed lines, respectively. The gripper is
shown to follow the falling ball’s position with a small error up to 1.6 millimeters after regrasp along the axes. This
error is due to the regrasp based on the convergence of the angle α and not the position. Increasing the control gains
would lead to zero position error. However, this would lead to exceeding the limits of the torques as joints 2 and 4
are on the boundaries. The aim is to rotate the relative angle and not translate; therefore, this solution is feasible365

and optimal to the demand.

7.3. Regrasp experiments

An experimental setup was designed and built to provide a demonstration of the proposed regrasping method.
A three degrees of freedom robotic arm was assembled with four MX-106 Dynamixel actuators (two are coupled at
the joint of the first link to double the torque) for its joints and two MX-28 actuators for the two jaws’ gripper.370

The actuators were found unable to provide the torques specified by the producer. Therefore, the arm was mounted
parallel to a 5o inclined air hockey table with a 2000W air compressor. Thus, the falling disk-shaped object could
slide with minimum friction. A motion capture system by OptiTrack including six peripherals cameras was set to
track the moving objects position and orientation. The experimental setup can be seen in Figure 18. Since this is a
custom-built arm, its dynamic properties are not known and were approximated according to the model identification375

method described in Section 4.

Exp1Regrasp1.png Exp1Regrasp3.png Exp1Regrasp4.png Exp1Regrasp5.png

Exp1Regrasp6.png Exp1Regrasp7.png Exp1Regrasp8.png Exp1Regrasp9.png

Figure 19: Snapshots of an experiment regrasping a disk to α = 25o.

Since this is a planar setup, the pose of the gripper is three-dimensional. For a time optimal solution, the
initial pose of the gripper was set to pg(0) = (xg yg θg)

T = (0.22 0.22 90o)T and the CT control gains matrix was
Kp = diag(20 18 23). The relative pose at time t = 0 was initialized to zero and the goal relative angle was set to
α = 25o about the axis perpendicular to the table. Snapshots of this motion are shown in Figure 19. The relative380

angle response and the positions of the gripper and object can be seen in Figures 20 and 21, respectively. It should
be noted that due to noisy signal readings from the cameras and dynamixels, a simple mean filter was applied for
noise reduction. Accurate angle regrasp can be seen along with a relatively good position tracking of up to 9mm error
during the fall. However, at the regrasp the position error was about 0.5mm, which is a very good accuracy. The
results prove the feasibility of the proposed regrasping approach.385
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AlphaExp1Regrasp.png

Figure 20: Response of the rotation angle α(t) during the experimental regrasp to α = 25o.

PositionExp1Regrasp.png

Figure 21: Position response of the gripper and object during the experimental regrasp to α = 25o.



8. Conclusions

In this paper we have presented a bioinspired approach for performing in-hand regrasping of an object. Similarly
to using the motion of the whole arm and the simple opening and closing operation of the human hand, we use
the dynamics of a robotic arm and a non-dexterous gripper. The object is released into mid-air while the gripper
reconfigure its relative pose until catching it in the desired orientation. We believe that the approach, once implemented390

in industrial production lines, can enhance the use of robotic arms for multiple tasks on the same object. This will
reduce the number of robotic arms in the factory, shorten the manufacturing time and reduce costs.

In this paper we proposed a motion planning paradigm for the regrasping. Interception between the gripper and
the desired object in the desired relative pose is implemented using computed-torque control. The CT controller
enables acquiring an analytical expression of the joint trajectories and an approximation of the regrasping time. With395

that, we have presented a stochastic motion planning algorithm that finds a set of regrasping solutions satisfying
the kinodynamic constraints of the problem. An important contribution of this algorithm is its ability to optimize
the initial state of the gripper and the control gains magnitude. A feasible set of solutions is found by generating
random points within the allowed region of the free parameters and checking each one for feasibility. The feasibility
analysis was done with an adaptive step size algorithm, decreasing the step size if the point approaches the constraint400

boundary. Moreover, an optimal solution is chosen from the set of feasible solutions.
Analysis has shown that the probability to find a solution if one exists approaches one as the number of random

points increases to infinity. Nevertheless, it chooses the number of random points based on our choice of a probability
to find a solution. Moreover, the statistical analysis enabled an automatic parameters selection for the algorithm to
find a solution in a given probability or runtime. In the worst case, the algorithm has a time complexity in the order405

of O(Smaxεb
N). It should be noticed that the algorithm plans the motion off-line prior to the motion. The planning

time is in the order of a few minutes which is reasonable for off-line planning in industrial applications. Future work
will involve runtime reduction. To reduce the runtime, parallel computation could be used as the check of each point
is independently computed. Moreover, reducing region Σ could also be utilized to replace pose constraints that are
currently integrated in Ψ. This could dramatically reduce the runtime of checking each point. Future work would410

also consider application for online planning where uncertainty in the environment such as dynamic obstacles is taken
into account.

The proposed algorithm is a motion planning paradigm for the in-hand regrasping manipulation. We provided
a demo of the manipulation for the planar case. However, to perform such manipulation in a spatial and practical
industrial application, one must also address the tracking side of the problem. In particular, an agile vision and415

estimation system must be setup such that it will provide high frequency feedback to the controller. Examples of
such potential systems are presented in [25, 50]. It is also possible to add a constraint to (35) based on the feedback
frequency of a given system. This may enable a lower frequency tracking system by allowing increased interception
time. We also note that the tracking system will have to operate from several directions to overcome possible occlusion
of the object by the robot. We leave this issue for future work.420
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(1847) 536–538.

[49] H. Lebesgue, K. May, Measure and the Integral, The Mathesis Series, Holden-Day, 1966.

[50] A. Namiki, N. Itoi, Ball catching in kendama game by estimating grasp conditions based on a high-speed vision535

system and tactile sensors, in: Proceedings of the IEEE-RAS International Conference on Humanoid Robots,
2014, pp. 634–639.

23



ControlScheme-eps-converted-to.pdf

Figure 2: The proposed control scheme for the regrasping manipulation.

EEwithOBJ3Dn-eps-converted-to.pdf

Figure 3: Illustration of the desired rotation about ω̂o.
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PsiTime-eps-converted-to.pdf

Figure 4: The TVC problem where 0 < ta < tb < tf .

TVC-eps-converted-to.pdf

Figure 5: Vector σ∗ satisfying Lemma 1 in an example where Ω ⊆ R2. σ̂1 and σ̂2 are the axes Ω.
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Figure 6: Adaptive step size algorithm.
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rectangle-eps-converted-to.pdf

Figure 7: Search in small hyper-rectangles Σi, i = 1, ...,m around feasible points found in the preliminary search.

KUKA-eps-converted-to.pdf

Figure 8: The KUKA iiwa arm with six joints and a jaw gripper holding a ball with zero relative pose.
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Figure 9: Simulation of a simple non-optimal regrasping motion.
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AlphaSimpleRegrasp.png

Figure 10: Response of the rotation angle α(t) during simple regrasping.

SolVsN.png

Figure 11: Average number of solutions found with regard to different values of N .
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TimeVsN.png

Figure 12: Average runtime as a function of N .
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Sim1Regrasp3.png Sim1Regrasp4.png

Figure 13: Snapshots of a time optimal ball regrasp to α = −80o.
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AlphaSim1Regrasp.png

Figure 14: Response of the rotation angle α(t) during a time optimal regrasp to α = −80o.
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AnglesSim1Regrasp.png

Figure 15: Joint angles of the KUKA arm during the time optimal regrasp to α = −80o. The dotted lines are the joint angle limits as
declared by the KUKA manufacturer.
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TorqueSim1Regrasp.png

Figure 16: Joint torques of the KUKA arm during the time optimal regrasp to α = −80o. The dotted lines are the joint torque limits as
declared by the KUKA manufacturer.
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xyzSim1Regrasp.png

Figure 17: Position of the gripper and object along the xyz-axes during the time optimal regrasp to α = −80o.
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ExpSys.png

Figure 18: Experimental system: three DOF arm on an inclined air-hockey table.
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